A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Quantification strategies for two-dimensional liquid chromatography datasets using regions of interest and multivariate curve resolution approaches. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, three chemometrics-based approaches are compared for quantification purposes when using two-dimensional liquid chromatography (LC×LC-MS), taking as a study case the quantification of amino acids in commercial drug mixtures. Although the approaches have been already used for one-dimensional gas or liquid chromatography, the main novelty of this work is the demonstration of their applicability to LC×LC-MS datasets. Besides, steps such as peak alignment and modelling, commonly applied in this type of data analysis, are not required with the approaches proposed here. In a first step, regions of interest (ROI) strategy is used for the spectral compression of the LC×LC-MS datasets. Then the first strategy consists of building a calibration curve from the areas obtained in this ROI compression step. Alternatively, the ROI intensity matrices can be used as input for a second analysis step employing the multivariate curve resolution alternating least squares (MCR-ALS) method. The main benefit of MCR-ALS is the resolution of elution and spectral profiles for each of the analytes in the mixture, even in the case of strong coelutions and high signal overlapping. Classical MCR-ALS based calibration curve from the peak areas resolved only applying non-negativity constraints (second strategy) is compared to the results obtained when an area correlation constraint is imposed during the ALS optimization (third strategy). All in all, similar quantification results were achieved by the three approaches but, especially in prediction studies, the more accurate quantification is obtained when the calibration curve is built from the peak areas obtained with MCR-ALS when the area correlation constraint is imposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.123586DOI Listing

Publication Analysis

Top Keywords

liquid chromatography
12
calibration curve
12
two-dimensional liquid
8
regions interest
8
multivariate curve
8
curve resolution
8
lc×lc-ms datasets
8
peak areas
8
area correlation
8
correlation constraint
8

Similar Publications