Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Due to the frequent pesticide applications, bees are suffered from pesticide exposure risks via consumption and direct contact with sprayed drifts. However, if pesticides are misused and the potential exposure risk to bees based on realistic pesticide application data are still little reported. In this study, pesticide application patterns in wheat-maize rotation system, vegetable and apple producing areas, was studied by interviewing farmers in Quzhou County, the North China Plain. The pesticide use status was evaluated by the recommended and actual applied dose and risk quotient (RQ) based Bee-REX model was used to assess the exposure risks of pesticide to bees based on the collected pesticide application data. The results showed that over half (52 %) of farmers in selected sites misused pesticides and orchard owners were frequently misused pesticides. Positive correlations were found between pesticide usage performance and farmers' specialized training experience. Pesticides applied in orchards have caused higher exposure risks to bees with the mean of RQs exceed 120 and 1880 via acute contact and dietary routes, respectively. Pesticide misuse significantly elevates the exposure risk to bees that the mean RQ under misuse scenarios was 5.8 times than that of correct use. Abamectin, fipronil and neonicotinoids contributed most to the pesticide exposure risk to bees. The main findings of this study imply that more sustainable pest and pollinator management strategies, including the moratorium high-risk insecticides and providing diverse flower resources and habitats, are highly needed. Additionally, measures such as implementing farmer educating and training programs should also be put on the agenda.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113713 | DOI Listing |