98%
921
2 minutes
20
A straightforward synthetic protocol leading to carbene-metal-amido (CMA) complexes (metal=Au, Cu) using a mild base and an environmentally desirable solvent (EtOH) has been explored, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene (NHC) ligands, including BIAN-NHCs (BIAN=bis(imino)acenaphthene). The novel CMAs were structurally characterized, and gold-based CMAs bearing diverse NHCs were screened as simple, Brønsted-basic precatalysts. The readily accessible complexes display high catalytic activity in the intermolecular and intramolecular hydrocarboxylation of internal alkynes and alkynoic acids respectively, while the screening reveals the ancillary ligand effect of NHCs in these catalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202201224 | DOI Listing |
Chemistry
August 2022
Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium.
A straightforward synthetic protocol leading to carbene-metal-amido (CMA) complexes (metal=Au, Cu) using a mild base and an environmentally desirable solvent (EtOH) has been explored, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene (NHC) ligands, including BIAN-NHCs (BIAN=bis(imino)acenaphthene). The novel CMAs were structurally characterized, and gold-based CMAs bearing diverse NHCs were screened as simple, Brønsted-basic precatalysts. The readily accessible complexes display high catalytic activity in the intermolecular and intramolecular hydrocarboxylation of internal alkynes and alkynoic acids respectively, while the screening reveals the ancillary ligand effect of NHCs in these catalytic systems.
View Article and Find Full Text PDFChemistry
August 2021
Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium.
The development of novel and operationally simple synthetic routes to carbene-metal-amido (CMA) complexes of copper, silver and gold relevant for photonic applications are reported. A mild base and sustainable solvents allow all reactions to be conducted in air and at room temperature, leading to high yields of the targeted compounds even on multigram scales. The effect of various mild bases on the N-H metallation was studied in silico and experimentally, while a mechanochemical, solvent-free synthetic approach was also developed.
View Article and Find Full Text PDF