98%
921
2 minutes
20
Background: Thalassemias are inherited blood disorders and by far one of the most common monogenic diseases globally. Beta-thalassemia has a particularly high prevalence in Cyprus, with the IVSI-110 G>A (HBB:c.93-21G>A) pathogenic variation representing almost 79% of the total carriers. The discovery that 3% to 20% of cell-free fetal DNA (cffDNA) is present in the maternal plasma allowed the development of non-invasive prenatal diagnosis (NIPD) of monogenic diseases, like beta-thalassemia, avoiding the risks of invasive procedures. However, the development of NIPD holds major technical challenges and has not yet reached the clinical setting.
Methods: In this study, we apply droplet digital PCR (ddPCR) coupled with the relative variant dosage approach to develop a NIPD assay for IVSI-110 G>A beta-thalassemia. We have implemented an optimization process for ddPCR to address the challenges of ddPCR assays such as inconclusive rain droplets and thus increase the sensitivity and specificity of the assay. The established protocol was evaluated on 40 maternal plasma samples with a median gestational age of 10 weeks where both parents carried the same pathogenic variation.
Results: Thirty-three samples were correctly classified, 6 remained inconclusive, and 1 was misclassified. Our assay exhibited 97.06% accuracy (95% CI, 82.46-99.68), 100% sensitivity (95% CI, 76.84-100), and 95% specificity (95% CI, 75.13-99.87), demonstrating its efficiency for the non-invasive detection of both maternal and paternal alleles.
Conclusions: We have developed an efficient, simple, and cost-effective ddPCR assay for the non-invasive determination of fetal genotype in couples at risk of IVSI-110 G>A beta-thalassemia, bringing NIPD of monogenic diseases closer to the diagnostic setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/clinchem/hvac076 | DOI Listing |
J Clin Invest
September 2025
Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
Invest Ophthalmol Vis Sci
September 2025
The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom.
Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.
Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.
Breast Cancer Res
September 2025
Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Background: Polygenic risk scores (PRS) are not yet standard in clinical risk assessments for familial breast cancer in Sweden. This study evaluated the distribution and impact of an established PRS (PRS) in women undergoing clinical sequencing for hereditary breast cancer.
Findings: We integrated PRS into a hereditary breast cancer gene panel used in clinical practice and calculated scores for 262 women.
Genes (Basel)
August 2025
Medical Faculty, Department of Medical Genetics, Medical University of Sofia, Sofia 1000, Bulgaria.
The journal retracts the article "Pathogenic Variants Associated with Rare Monogenic Diseases Established in Ancient Neanderthal and Denisovan Genome-Wide Data" [...
View Article and Find Full Text PDFArrhythm Electrophysiol Rev
August 2025
Department of Cardiology, National University Heart Centre Singapore Singapore.
Sudden cardiac death (SCD) is one of the leading causes of death worldwide. Coronary artery disease (CAD) is the predominant cause of SCD in older individuals, while inherited cardiomyopathies and channelopathies are more common in younger individuals under the age of 35 years. Genetic disorders associated with SCD have traditionally been perceived as monogenic disorders.
View Article and Find Full Text PDF