98%
921
2 minutes
20
Background: C-KIT is a receptor tyrosine kinase with oncogenic properties overexpressed in PCa cases. Through the use of an alternative promoter, a truncated c-KIT protein (tr-KIT) of 30-50 kDa is generated, lacking the extracellular and transmembrane domain. Tr-KIT promotes the formation of a multi-molecular complex composed of Fyn, Plcγ1, and Sam68. Imatinib blocks the activity of full-length c-KIT but has no effect on tr-KIT. LNCaP is the human PCa cell line that shows tr-KIT overexpression and PC3 does not show tr-KIT overexpression. miR-128/193a- 5p/494 are miRNAs targeting FYN, PLCγ1, and SAM68 combinatorially. The study's question is: can miR-128/193a- 5p/494 be related to imatinib resistance in PCa?
Methods: LNCaP and PC3 cells were treated with imatinib in IC50 doses. Before and after imatinib administration, RNA was isolated and cDNA conversion was performed. By qPCR analysis, expression changes of tr-KIT specific pathway elements and miR-128/193a-5p/494 were analyzed before and after imatinib administration.
Results: After imatinib administration, miR-128/193a-5p/494 were significantly overexpressed in LNCaP cells while downregulated significantly in PC3 cells (p<0.05). Also, FYN was upregulated in LNCaP cells (p<0.05) but there was no change in PC3 after imatinib administration.
Conclusion: Especially upregulation of FYN may sponge miR128/193a-5p/494 and downregulate their transcriptional activity in LNCaP cells having tr-KIT activity. So, miR-128/193a-5p/494 may have a critical role in imatinib resistance via a tr-KIT pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520622666220601093452 | DOI Listing |
Food Sci Nutr
September 2025
Department of Nutrition Sciences, School of Health Larestan University of Medical Sciences Iran.
Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.
View Article and Find Full Text PDFGastric Cancer
September 2025
Department of Gastroenterological Surgery, The University of Osaka Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
Background: The tyrosine kinase inhibitor (TKI) imatinib targets KIT and PDGFRA, offering significant therapeutic benefits in advanced gastrointestinal stromal tumors (GISTs). However, the high rate of recurrence following treatment discontinuation suggests that drug-tolerant persister cells (DTPs) may contribute to therapy resistance. Elucidating the mechanisms underlying DTP survival is critical for the development of curative strategies.
View Article and Find Full Text PDFRSC Med Chem
August 2025
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University 4.5 Km the Ring Road Ismailia 41522 Egypt.
Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.
View Article and Find Full Text PDFFuture Oncol
September 2025
Division of Leukemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by the fusion gene which produces a constitutively active tyrosine kinase which drives disease pathogenesis and is associated with resistance to conventional chemotherapy. Intensive cytotoxic chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT), the historical treatment paradigm for Ph+ ALL, was associated with poor outcomes. The introduction of inhibitors of ABL1 revolutionized the treatment of Ph+ ALL.
View Article and Find Full Text PDFJ Smooth Muscle Res
September 2025
Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
Pulmonary arterial hypertension (PAH) is a rare and fatal cardiovascular disease characterized by pulmonary vascular remodeling, leading to a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure (PAP). Elevated PAP induces right ventricular hypertrophy and eventually progresses to right heart failure. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) in the medial layer.
View Article and Find Full Text PDF