Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In intertidal systems, the type and role of interactions among sediment microorganisms, animals, plants and abiotic factors are complex and not well understood. Such interactions are known to promote nutrient provision and cycling, and their dynamics and relationships may be of particular importance in arid microtidal systems characterized by minimal nutrient input. Focusing on an arid mangrove ecosystem on the central Red Sea coast, we investigated the effect of crab bioturbation intensity (comparing natural and manipulated high levels of bioturbation intensity) on biogeochemistry and bacterial communities of mangrove sediments, and on growth performance of , over a period of 16 months. Along with pronounced seasonal patterns with harsh summer conditions, in which high sediment salinity, sulfate and temperature, and absence of tidal flooding occur, sediment bacterial diversity and composition, sediment physicochemical conditions, and plant performance were significantly affected by crab bioturbation intensity. For instance, bioturbation intensity influenced components of nitrogen, carbon, and phosphate cycling, bacterial relative abundance (i.e., and ) and their predicted functionality (i.e., chemoheterotrophy), likely resulting from enhanced metabolic activity of aerobic bacteria. The complex interactions among bacteria, animals, and sediment chemistry in this arid mangrove positively impact plant growth. We show that a comprehensive approach targeting multiple biological levels provides useful information on the ecological status of mangrove forests. Bioturbation is one of the most important processes that governs sediment biocenosis in intertidal systems. By facilitating oxygen penetration into anoxic layers, bioturbation alters the overall sediment biogeochemistry. Here, we investigate how high crab bioturbation intensity modifies the mangrove sediment bacterial community, which is the second largest component of mangrove sediment biomass and plays a significant role in major biogeochemical processes. We show that the increase in crab bioturbation intensity, by ameliorating the anoxic condition of mangrove sediment and promoting sediment bacterial diversity in favor of a beneficial bacterial microbiome, improves mangrove tree growth in arid environments. These findings have significant implications because they show how crabs, by farming the mangrove sediment, can enhance the overall capacity of the system to sustain mangrove growth, fighting climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241789PMC
http://dx.doi.org/10.1128/spectrum.01117-22DOI Listing

Publication Analysis

Top Keywords

bioturbation intensity
28
crab bioturbation
16
mangrove sediment
16
sediment
13
arid mangrove
12
sediment bacterial
12
mangrove
11
bioturbation
9
intensity modifies
8
plant growth
8

Similar Publications

Sea cucumbers, as ecosystem engineers, effectively clear nutrient accumulation in sediments, thus alleviating ecological pressure imposed on marine environments by the large-scale aquaculture industry. However, water temperature continues to increase because of increased carbon dioxide emissions, affecting the physiological and behavior state of sea cucumbers. Moreover, limited research exists on sea cucumber at varying temperatures.

View Article and Find Full Text PDF

Impact of Microplastic Exposure on Sand Crab Behavior: Implications for Microplastic Transport and Sulfur Cycling through Bioturbation.

Environ Sci Technol

April 2025

Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China.

The accumulation of microplastics (MPs) in estuarine regions and their ecological consequences have become global environmental concerns. Estuarine sediments function as major sinks for MPs and hotspots for critical biogeochemical processes, which are significantly influenced by benthic bioturbation. However, the impacts of MPs on the behavior of highly mobile benthic organisms and the ecological effects of bioturbation activities remain poorly understood.

View Article and Find Full Text PDF

The hadal zone, >6 km deep, remains one of the least understood ecosystems on Earth. We address bioturbational structures in sediment cores from depths exceeding 7.5 km, collected during the IODP Expedition 386 in the Japan Trench.

View Article and Find Full Text PDF

Extensive ichnologic and sedimentologic datasets were gathered from six localities (Fortune Head, Fortune North, Grand Bank Head, Lewin's Cove, Little Dantzic Cove, and Point May) of the Ediacaran-Cambrian Chapel Island Formation at Burin Peninsula, southeastern Newfoundland, eastern Canada. 1708.2 m of sedimentary strata were logged at a centimeter scale (1:40) using a Jacob staff, in addition to 11.

View Article and Find Full Text PDF

The Cambrian explosion was a time of groundbreaking ecological shifts related to the establishment of the Phanerozoic biosphere. Trace fossils, which are the products of animals interacting with their substrates, provide a key record of the diversification of the benthos and the evolution of behavioral complexity through this interval. The Chapel Island Formation of Newfoundland in Canada hosts the most extensive trace-fossil record from the latest Ediacaran to Cambrian Age 2, spanning about 20 million years continuously.

View Article and Find Full Text PDF