Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: State-of-the-art automatic atrial fibrillation (AF) detection models trained on RR-interval (RRI) features generally produce high performance on standard benchmark electrocardiogram (ECG) AF datasets. These models, however, result in a significantly high false positive rates (FPRs) when applied on ECG data collected under free-living ambulatory conditions and in the presence of non-AF arrhythmias.

Method: This paper proposes DeepAware, a novel hybrid model combining deep learning (DL) and context-aware heuristics (CAH), which reduces the FPR effectively and improves the AF detection performance on participant-operated ambulatory ECG from free-living conditions. It exploits the RRI and P-wave features, as well as the contextual features from the ambulatory ECG.

Results: DeepAware is shown to be very generalizable and superior to the state-of-the-art models when applied on unseen benchmark ECG AF datasets. Most importantly, the model is able to detect AF efficiently when applied on participant-operated ambulatory ECG recordings from free-living conditions and has achieved a sensitivity (Se), specificity (Sp), and accuracy (Acc) of 97.94%, 98.39%, 98.06%, respectively. Results also demonstrate the effect of atrial activity analysis (via P-waves detection) and CAH in reducing the FPR over the RRI features-based AF detection model.

Conclusions: The proposed DeepAware model can substantially reduce the physician's workload of manually reviewing the false positives (FPs) and facilitate long-term ambulatory monitoring for early detection of AF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.106899DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning context-aware
8
atrial fibrillation
8
fibrillation detection
8
ecg datasets
8
participant-operated ambulatory
8
ambulatory ecg
8
free-living conditions
8
detection
6
ecg
5

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Magn Reson Med

September 2025

Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.

Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF