Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biobased waterborne latexes were synthesized by miniemulsion radical copolymerization of a biosourced β-myrcene (My) terpenic monomer and styrene (S). Biobased amphiphilic copolymers were designed to act as stabilizers of the initial monomer droplets and the polymer colloids dispersed in the water phase. Two types of hydrophilic polymer backbones were hydrophobically modified by terpene molecules to synthesize two series of amphiphilic copolymers with various degrees of substitution. The first series consists of poly(acrylic acid) modified with tetrahydrogeraniol moieties (PAA--THG) and the second series is based on the polysaccharide carboxymethylpullulan amino-functionalized with dihydromyrcenol moieties (CMP--(NH-DHM)). The produced waterborne latexes with diameters between 160 and 300 nm and were composed of polymers with varying glass transition temperatures ( = -60 °C, = -14 °C, = 105 °C) depending on the molar fraction of biobased β-myrcene (,0 = 0, 0.43, or 1). The latexes successfully stabilized dodecane-in-water and water-in-dodecane emulsions for months at all compositions. The waterborne latexes composed of low poly(β-myrcene) caused interesting different behavior during drying of the emulsions compared to polystyrene latexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.2c00257 | DOI Listing |