98%
921
2 minutes
20
Salt sensitivity of blood pressure (BP) refers to an increase in BP following an increase in dietary salt, which is associated with increased incidence of cardiovascular disease and early death. However, decreased sodium intake also increases mortality and morbidity. Inverse salt sensitivity (ISS), defined as a paradoxical increase in BP on a low-salt diet, about 11% of the population, may be the cause of this phenomenon. The epithelial sodium channel (ENaC) is a major regulator of sodium reabsorption in the kidney. In this study, human renal tubular epithelial cells (hRTC) were cultured from the urine of phenotyped salt study participants. αENaC expression was significantly lower in ISS than salt resistant (SR) hRTC, while ENaC-like channel activity was dramatically increased by trypsin treatment in ISS cells analyzed by patch clamp. αENaC expression was also decreased under high-salt treatment and increased by aldosterone treatment in ISS cells. Moreover, the αENaC variant, rs4764586, was more prevalent in ISS. In summary, αENaC may be associated with ISS hypertension on low salt. These findings may contribute to understanding the mechanisms of ISS and low salt effect on morbidity and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138231 | PMC |
http://dx.doi.org/10.3390/biomedicines10050981 | DOI Listing |
Anesthesiology
September 2025
Department of Anesthesiology and Pain Medicine, Laboratory for Cardiovascular Dynamics, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
Background: Cardiovascular complications are the leading cause of mortality following liver transplantation (LT) in patients with acute-on-chronic liver failure (ACLF). However, the extent of cardiac impairment in these patients remains unclear. Current risk models, including the CLIF-C-organ failure (CLIF-C-OF), NACSELD-ACLF, and the novel Sundaram ACLF-LT-mortality (SALT-M) scores primarily focus on blood pressure and the use of cardiovascular drugs, without directly assessing biomarkers of cardiac injury.
View Article and Find Full Text PDFNEJM AI
September 2025
Department of Bioengineering, Stanford University, Stanford, CA.
Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.
View Article and Find Full Text PDFNucleus
December 2025
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.
View Article and Find Full Text PDFJ Clin Exp Neuropsychol
September 2025
Program in Physical Therapy and Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Introduction: An important frontier for neuropsychology involves developing additional technologies that could complement current behavioral approaches. Concurrent electroencephalographic (EEG) markers are especially promising for informing the neural processes underlying cognitive performance during neuropsychological assessments. The EEG aperiodic exponent shows sensitivity to both age and task-related effects, with prior studies relating smaller exponents to poorer performance in older adults, and larger exponents to greater task engagement in general.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Laboratory for Structural Analysis of Biomacromolecules, Kazan Scientific Center of Russian Academy of Science, Kazan, Russia.
Phosphorylated structural analogs of Benzalkonium Chloride-diisopropoxyphosphorylmethane (dimethyldodecylammonium) bromide 1 (phosphorylated quaternary ammonium salt) and isopropoxyphosphorylmethane (dimethylalkylammonium) 2 (phosphorylated betaine) were synthesized. The structure of compound 1 was confirmed by single crystal X-ray diffraction study. The antibacterial, antifungal, and ecotoxicological profiles of the synthesized compounds were evaluated against aquatic organisms and flowering plants.
View Article and Find Full Text PDF