Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Type I collagen is one of the most important proteins in the human body because of its role in providing structural support to the extracellular matrix of the connective tissues. Understanding its mechanical properties was widely investigated using experimental testing as well as molecular and finite element simulations. In this work, we present a new approach for defining the properties of the type I collagen fibrils by analytically formulating its response when subjected to a tensile load and investigating the effects of enzymatic crosslinks on the behavioral response. We reveal some of the shortcomings of the molecular dynamics (MD) method and how they affect the obtained stress-strain behavior of the fibril, and we prove that not only does MD underestimate the Young's modulus and the ultimate tensile strength of the collagen fibrils, but also fails to detect the mechanics of some stretching phases of the fibril. We prove that non-crosslinked fibrils have three tension phases: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime related to the stretching of the backbone of the tropocollagen molecules, and (iii) a plastic regime dominated by molecular sliding. We also show that for crosslinked fibrils, the second regime can be subdivided into three sub-regimes, and we define the properties of each regime. We also prove, analytically, the alleged MD quadratic relation between the ultimate tensile strength of the fibril and the concentration of enzymatic crosslinks ().
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138028 | PMC |
http://dx.doi.org/10.3390/bioengineering9050193 | DOI Listing |