A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

DNA-PAINT Imaging Accelerated by Machine Learning. | LitMetric

DNA-PAINT Imaging Accelerated by Machine Learning.

Front Chem

Key Laboratory of Biomedical Engineering of Ministry of Education, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang Univers

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA point accumulation in nanoscale topography (DNA-PAINT) is an easy-to-implement approach for localization-based super-resolution imaging. Conventional DNA-PAINT imaging typically requires tens of thousands of frames of raw data to reconstruct one super-resolution image, which prevents its potential application for live imaging. Here, we introduce a new DNA-PAINT labeling method that allows for imaging of microtubules with both DNA-PAINT and widefield illumination. We develop a U-Net-based neural network, namely, U-PAINT to accelerate DNA-PAINT imaging from a widefield fluorescent image and a sparse single-molecule localization image. Compared with the conventional method, U-PAINT only requires one-tenth of the original raw data, which permits fast imaging and reconstruction of super-resolution microtubules and can be adopted to analyze other SMLM datasets. We anticipate that this machine learning method enables faster and even live-cell DNA-PAINT imaging in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127464PMC
http://dx.doi.org/10.3389/fchem.2022.864701DOI Listing

Publication Analysis

Top Keywords

dna-paint imaging
16
machine learning
8
raw data
8
dna-paint
7
imaging
7
imaging accelerated
4
accelerated machine
4
learning dna
4
dna point
4
point accumulation
4

Similar Publications