Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Respondents in a health valuation study may have different sources of error (i.e., heteroskedasticity), tastes (differences in the relative effects of each attribute level), and scales (differences in the absolute effects of all attributes). Although prior studies have compared values by preference-elicitation tasks (e.g., paired comparison [PC] and best-worst scaling case 2 [BWS]), no study has yet controlled for heteroskedasticity and heterogeneity (taste and scale) simultaneously in health valuation.
Methods: Preferences on EQ-5D-5L profiles were elicited from a random sample of 380 adults from the general population of the Netherlands, using 24 PC and 25 BWS case 2 tasks. To control for heteroskedasticity and heterogeneity (taste and scale) simultaneously, we estimated Dutch EQ-5D-5L values using conditional, heteroskedastic, and scale-adjusted latent class (SALC) logit models by maximum likelihood.
Results: After controlling for heteroskedasticity, the PC and BWS values were highly correlated (Pearson's correlation: 0.9167, CI: 0.9109-0.9222) and largely agreed (Lin's concordance: 0.7658, CI: 0.7542-0.7769) on a pits scale. In terms of preference heterogeneity, some respondents (mostly young men) failed to account for any of the EQ-5D-5L attributes (i.e., garbage class), and others had a lower scale (59%; p-value: 0.123). Overall, the SALC model produced a consistent Dutch EQ-5D-5L value set on a pits scale, like the original study (Pearson's correlation:0.7295; Lin's concordance: 0.6904).
Conclusions: This paper shows the merits of simultaneously controlling for heteroskedasticity and heterogeneity in health valuation. In this case, the SALC model dispensed with a garbage class automatically and adjusted the scale for those who failed the PC dominant task. Future analysis may include more behavioral variables to better control heteroskedasticity and heterogeneity in health valuation.
Highlights: The Dutch EQ-5D-5L values based on paired comparison [PC] and best-worst scaling [BWS] responses were highly correlated and largely agreed after controlling for heteroskedasticity. Controlling for taste and scale heterogeneity simultaneously enhanced the Dutch EQ-5D-5Lvalues by automatically dispensing with a garbage class and adjusting the scale for those who failed the dominant task. After controlling for heteroskedasticity and heterogeneity, this study produced Dutch EQ-5D-5L values on a pits scale moderately concordant with the original values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9131619 | PMC |
http://dx.doi.org/10.1186/s12955-022-01989-9 | DOI Listing |