98%
921
2 minutes
20
Paenibacillus larvae, the causative agent of American foulbrood (AFB), produces spores that may be detectable within honey. We analyzed the spore content of pooled, extracted honey from 52 large-scale (L) and 64 small-scale (S) Saskatchewan beekeepers over a two-year period (2019-2020). Our objectives were: (i) establish reliable prognostic reference ranges for spore concentrations in extracted honey to determine future AFB risk at the apiary level; (ii) identify management practices as targets for mitigation of risk. P. larvae spores were detected in 753 of 1476 samples (51%). Beekeepers were stratified into low (< 2 spores/gram), moderate (2- < 100 spores/gram), and high (≥ 100 spores/gram) risk categories. Of forty-nine L beekeepers sampled in 2019, those that reported AFB in 2020 included 0/26 low, 3/18 moderate, and 3/5 high risk. Of twenty-seven L beekeepers sampled in 2020, those that reported AFB in 2021 included 0/11 low, 2/14 moderate, and 1/2 high risk. Predictive modelling included indoor overwintering of hives, purchase of used equipment, movement of honey-producing colonies between apiaries, beekeeper demographic, and antimicrobial use as risk category predictors. Saskatchewan beekeepers with fewer than 2 spores/gram in extracted honey that avoid high risk activities may be considered at low risk of AFB the following year.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132951 | PMC |
http://dx.doi.org/10.1038/s41598-022-12856-4 | DOI Listing |
Food Sci Biotechnol
October 2025
Department of Food Process Engineering, National Institute of Technology (NIT), Rourkela, 769008 Odisha India.
Unlabelled: Propolis, or bee glue, is a resinous substance produced by honeybees from plant resins, rich in bioactive compounds with antimicrobial, antioxidant, anti-cancer, anti-inflammatory, and anti-cavity properties. These qualities make it a valuable natural preservative in the food industry, extending shelf life and preventing spoilage. Propolis has gained attention as an alternative to synthetic preservatives.
View Article and Find Full Text PDFAccurate honey bee subspecies identification is vital for biodiversity conservation and pollination resilience, yet current methods face critical limitations. Classical morphometric techniques, reliant on manual wing vein measurements, suffer from subjectivity and poor scalability across hybrid populations, while deep learning approaches demand extensive labeled datasets and exhibit limited interpretability in noisy field conditions. Crucially, existing methods fail to reconcile scalability with the ability to analyze phenotypic gradients in hybrid specimens.
View Article and Find Full Text PDFSci Rep
September 2025
Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
An in-situ CO₂-assisted dispersive micro solid phase extraction was developed using a covalent organic framework synthesized from melamine and barbituric acid as a sorbent for the extraction of Cd(II) and Zn(II) ions from honey samples. The structural and morphological characteristics of the sorbent were evaluated using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry. The CO₂ generated by reacting tartaric acid and sodium hydrogen carbonate enabled rapid dispersion of the sorbent within the sample solution, ensuring optimal contact with the target ions.
View Article and Find Full Text PDFJ Oleo Sci
August 2025
Department of Food Technology, Vocational School, İstanbul Esenyurt University.
In this study, the pH values, total phenolic content (TPC), total flavonoid content, and antioxidant capacities (using FRAP, DPPH, and CUPRAC assays) of different plant-based vinegar samples were evaluated. The highest phenolic content was detected in pomegranate vinegar (PV) with 754.53 µg GAE/mL extract, followed by blueberry (BV, 644.
View Article and Find Full Text PDFFood Chem
August 2025
Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:
Growing demand for alternative proteins has spurred research into microbial proteins, particularly Fusarium venenatum mycoprotein (MP). Naturally encapsulated within rigid fungal cell walls, MP requires efficient extraction to liberate intracellular protein for nutritional and functional applications. High-pressure homogenization (0-120 MPa) enhanced cell wall disruption and protein extraction, increasing protein content (47.
View Article and Find Full Text PDF