Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cancer recurrence is the diagnosis of a second clinical episode of cancer after the first was considered cured. Identifying patients who had experienced cancer recurrence is an important task as it can be used to compare treatment effectiveness, measure recurrence-free survival, and plan and prioritize cancer control resources. We developed BERT-based natural language processing (NLP) contextual models for identifying cancer recurrence incidence and the recurrence time based on the records in progress notes. Using two datasets containing breast and colorectal cancer patients, we demonstrated the advantage of the contextual models over the traditional NLP models by overcoming the laborious and often unscalable tasks of composing keywords in a specific disease domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI220403 | DOI Listing |