A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fusing spheroids to aligned μ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over the last decade, Organ-on-Chip (OoC) emerged as a promising technology for advanced models, recapitulating key physiological cues. OoC approaches tailored for cardiac tissue engineering resulted in a variety of platforms, some of which integrate stimulation or probing capabilities. Due to manual handling processes, however, a large-scale standardized and robust tissue generation, applicable in an industrial setting, is still out of reach. Here, we present a novel cell injection and tissue generation concept relying on spheroids, which can be produced in large quantities and uniform size from induced pluripotent stem cell-derived human cardiomyocytes. Hydrostatic flow transports and accumulates spheroids in dogbone-shaped tissue chambers, which subsequently fuse and form aligned, contracting cardiac muscle fibers. Furthermore, we demonstrate electrical stimulation capabilities by utilizing fluidic media connectors as electrodes and provide the blueprint of a low-cost, open-source, scriptable pulse generator. We report on a novel integration strategy of optical O sensor spots into resin-based microfluidic systems, enabling determination of O partial pressures. Finally, a proof-of-concept demonstrating electrical stimulation combined with monitoring of metabolic activity in cardiac tissues is provided. The developed system thus opens the door for advanced OoCs integrating biophysical stimulation as well as probing capabilities and serves as a blueprint for the facile and robust generation of high density microtissues in microfluidic modules amenable to scaling-up and automation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120495PMC
http://dx.doi.org/10.1016/j.mtbio.2022.100280DOI Listing

Publication Analysis

Top Keywords

probing capabilities
8
tissue generation
8
electrical stimulation
8
fusing spheroids
4
spheroids aligned
4
aligned μ-tissues
4
μ-tissues heart-on-chip
4
heart-on-chip featuring
4
featuring oxygen
4
oxygen sensing
4

Similar Publications