Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The critical event in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis is recognition of host cells by the virus, which is facilitated by protein-protein interaction (PPI) of viral Spike-Receptor Binding Domain (S-RBD) and Human Angiotensin Converting Enzyme 2-Receptor (hACE2-R). Thus, disrupting the interaction between S-RBD and hACE2-R is widely accepted as a primary strategy for managing COVID-19. The purpose of this study is to assess the ability of three steroidal lactones (SL) (4-Dehydrowithaferin A, Withaferin A, and Withalongolide A) derived from plants to disrupt the PPI of S-RBD and hACE2-R under two conditions (CON-I and CON-II) using in-silico methods. Under CON-I, 4-Dehydrowithaferin A destabilizing the interactions between S-RBD and hACE2-R, as indicated by an increase in binding energy (BE) from -1028.5 kJ/mol (control) to -896.12 kJ/mol 4-Dehydrowithaferin A exhibited a strong interaction with S-RBD GLY496 with a hydrogen bond occupancy (HBO) of 37.33%. Under CON-II, Withalongolide A was capable of disrupting all types of PPI, as evidenced by an increased BE from -913 kJ/mol (control) to -133.69 kJ/mol and an increased distance (>3.55 nm) between selected AAR combinations of S-RBD and hACE2-R. Withalongolide A formed a hydrogen bond with TYR453 (97%, HBO) of S-RBD, which is required for interaction with hACE2-R's HIS34. Our studies demonstrated that SL molecules have the potential to disrupt the S-RBD and hACE2-R interaction, thereby preventing SARS-CoV-2 from recognizing host cells. The SL molecules can be considered for additional in-vitro and in-vivo studies with this research evidence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098575 | PMC |
http://dx.doi.org/10.1016/j.compbiomed.2022.105598 | DOI Listing |