A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A causal learning framework for the analysis and interpretation of COVID-19 clinical data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a workflow for clinical data analysis that relies on Bayesian Structure Learning (BSL), an unsupervised learning approach, robust to noise and biases, that allows to incorporate prior medical knowledge into the learning process and that provides explainable results in the form of a graph showing the causal connections among the analyzed features. The workflow consists in a multi-step approach that goes from identifying the main causes of patient's outcome through BSL, to the realization of a tool suitable for clinical practice, based on a Binary Decision Tree (BDT), to recognize patients at high-risk with information available already at hospital admission time. We evaluate our approach on a feature-rich dataset of Coronavirus disease (COVID-19), showing that the proposed framework provides a schematic overview of the multi-factorial processes that jointly contribute to the outcome. We compare our findings with current literature on COVID-19, showing that this approach allows to re-discover established cause-effect relationships about the disease. Further, our approach yields to a highly interpretable tool correctly predicting the outcome of 85% of subjects based exclusively on 3 features: age, a previous history of chronic obstructive pulmonary disease and the PaO2/FiO2 ratio at the time of arrival to the hospital. The inclusion of additional information from 4 routine blood tests (Creatinine, Glucose, pO2 and Sodium) increases predictive accuracy to 94.5%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119448PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268327PLOS

Publication Analysis

Top Keywords

clinical data
8
covid-19 showing
8
approach
5
causal learning
4
learning framework
4
framework analysis
4
analysis interpretation
4
interpretation covid-19
4
covid-19 clinical
4
data workflow
4

Similar Publications