98%
921
2 minutes
20
In the present study we developed an injectable, bioactive and degradable hydrogel composed of alginate at 2.5% oxidation degree and calcium-activated platelet rich plasma (PRP) for wound healing applications (PRP-HG-2.5%). The alginate gives mechanical support to the hydrogel while the activated PRP provides growth factors that enhance wound healing and fibrin which creates an adequate microenvironment for cell migration and proliferation. The rheological and mechanical properties of the hydrogel were characterized. Further characterization revealed that PRP-HG-2.5% showed a faster hydrolitic degradation rate than unmodified alginate and a similar platelet derived growth factor (PDGF-BB) release profile. In vitro efficacy studies, carried out in human fibroblasts and keratinocytes, showed that PRP-HG-2.5% was not cytotoxic and that it was able to promote cell adhesion and proliferation. Thereafter, in an in vivo full thickness wound healing study conducted in diabetic mice, no differences were found among PRP-HG-2.5% and its counterpart without PRP, likely due to the xenogeneic origin of the PRP. This hypothesis was validated in vitro, since a cytotoxic effect was observed after human PRP application to mouse fibroblasts. Therefore, PRP-HG-2.5% might be a promising strategy for chronic woundstreatment, although its effectiveness should be evaluated in a more reliable preclinical model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2022.112695 | DOI Listing |
Injury
September 2025
Washington University School of Medicine, Department of Orthopaedic Surgery, St. Louis, MO, USA. Electronic address:
Introduction: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly prescribed for Type 2 diabetes and obesity due to their cardiometabolic benefits. However, their effects on fracture healing remain controversial. This study investigates perioperative GLP-1 RA use and outcomes following surgical treatment of lower extremity (LE) fractures.
View Article and Find Full Text PDFInflamm Bowel Dis
September 2025
Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.
View Article and Find Full Text PDFJ Invest Dermatol
September 2025
Department of Surgery, University of California San Diego, La Jolla, CA, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, United States. Electronic address:
Normal cutaneous wound healing is a multicellular process that involves the release of small extracellular vesicles (sEVs) that coordinate intercellular communication by delivery of sEV payloads to recipient cells. We have recently shown how the pro-reparative activity of inflammatory cell sEVs, especially macrophage and neutrophil-derived sEVs, in the wound bed is dysregulated in impaired wound healing. Here we show that loss of Rab27A, a small GTPase that has a regulatory function in sEV secretion, reduces the release of neutrophil and macrophage-derived sEVs.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, China. Electronic address:
Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China. Electronic address:
Conventional wound dressings primarily focus on biochemical regulation, often neglecting the potential benefits of mechanical cues in tissue regeneration. We report a Janus hydrogel (QPJ hydrogel) that synergistically integrates biochemical modulation with temperature-responsive mechanical contraction for advanced chronic wound management. The hydrogel is constructed from quaternary ammonium chitosan (QCS) and N-isopropylacrylamide (NIPAM), with an outer PNIPAM layer that generates a directional contractile stress >25 kPa at physiological temperature.
View Article and Find Full Text PDF