Hierarchical-Morphology Metal/Polymer Heterostructure for Scalable Multimodal Thermal Management.

ACS Appl Mater Interfaces

College of Materials Science & Engineering, Nanjing Tech University, Nanjing 211816, China.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cooling and heating energy consumption of buildings poses a serious threat to the energy supply and increases greenhouse gas emissions, thus adversely impacting global warming and the long-term climate change trends. Here, inspired by the structure of the louver, this work demonstrates a multimodal device that integrates radiative cooling, natural lighting, and solar heating to deal with the grand challenge of building energy consumption. The blades integrate a selective radiative cooling material with a solar heating material. The selective radiative cooling material (solar reflectance ∼97%, selective emittance ∼0.82 in the 8-13 μm waveband) combines a solar reflective melt-blown polypropylene film and a solar transparent mid-infrared emitter polyethylene/silicon dioxide film. In addition, the heating material (solar absorptance ∼91%, thermal emittance ∼0.04) is zinc (Zn) film deposited with copper (Cu) nanoparticles, based on the Cu-Zn galvanic-displacement reaction. Hence, by rotating the blades, the conversion of radiative cooling, solar heating, and natural lighting functions can be realized. In the daytime, the multimodal device displays a subambient temperature of 4 °C, a superambient temperature of 2 °C, and a superambient temperature of 5 °C for the cooling mode, transmitting mode, and solar heating mode, respectively. On the basis of the energy-savings simulation, integrating these modes and dynamic converting these modes in the corresponding climate could save ∼746 GJ in the contiguous United States for one year (38% of the baseline energy consumption), which is equivalent to ∼147 tons of carbon dioxide emission reduction. Because of its excellent multimodal thermal management performance, this multimodal device will push forward the transformative change of building thermal management toward decarbonization and sustainability and being more green.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c03513DOI Listing

Publication Analysis

Top Keywords

radiative cooling
16
solar heating
16
thermal management
12
energy consumption
12
multimodal device
12
material solar
12
temperature °c
12
multimodal thermal
8
natural lighting
8
solar
8

Similar Publications

High Performance Transmission-Type Daytime Radiative Cooling Film with a Simple and Scalable Method.

Adv Mater

September 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.

View Article and Find Full Text PDF

Reassignment of the vibronic structure in the absorption spectrum of carbon cluster anion C6- exhibiting fast radiative cooling.

J Chem Phys

September 2025

Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan.

Linear carbon cluster anions, such as C6-, have been considered to be promising candidate interstellar molecules. Recent experiments have demonstrated that in a collision-free vacuum environment, C6- exhibits fast radiative cooling from its highly vibrationally excited states through inverse internal conversion (IIC). Since IIC is driven by vibronic coupling, the understanding of vibronic structures of C6- is of theoretical significance.

View Article and Find Full Text PDF

Buildings are increasingly being conceived as dynamic systems that interact with their surroundings to optimize energy performance and enhance occupant comfort. This evolution in architectural thinking draws inspiration from biological systems, where the building envelope functions like a thermally responsive "skin" that can autonomously adjust its optical and thermal properties in response to environmental temperature changes. Among the many approaches developed for smart building envelopes, passive thermoresponsive spectral modulation systems have attracted growing interest due to their structural simplicity and low energy demand.

View Article and Find Full Text PDF

Drought stress has profound impacts on ecosystems and societies, particularly in the context of climate change. Traditional drought indicators, which often rely on integrated water budget anomalies at various time scales, provide valuable insights but often fail to deliver clear, real-time assessments of vegetation stress. This study introduces the Cooling Efficiency Factor Index (CEFI), a novel metric purely derived from geostationary satellite observations, to detect vegetation drought stress by analyzing daytime surface warming anomalies.

View Article and Find Full Text PDF

Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.

View Article and Find Full Text PDF