98%
921
2 minutes
20
Purpose: Genome-wide sequencing is increasingly being performed during pregnancy to identify the genetic cause of congenital anomalies. The interpretation of prenatally identified variants can be challenging and is hampered by our often limited knowledge of prenatal phenotypes. To better delineate the prenatal phenotype of Coffin-Siris syndrome (CSS), we collected clinical data from patients with a prenatal phenotype and a pathogenic variant in one of the CSS-associated genes.
Methods: Clinical data was collected through an extensive web-based survey.
Results: We included 44 patients with a variant in a CSS-associated gene and a prenatal phenotype; 9 of these patients have been reported before. Prenatal anomalies that were frequently observed in our cohort include hydrocephalus, agenesis of the corpus callosum, hypoplastic left heart syndrome, persistent left vena cava, diaphragmatic hernia, renal agenesis, and intrauterine growth restriction. Anal anomalies were frequently identified after birth in patients with ARID1A variants (6/14, 43%). Interestingly, pathogenic ARID1A variants were much more frequently identified in the current prenatal cohort (16/44, 36%) than in postnatal CSS cohorts (5%-9%).
Conclusion: Our data shed new light on the prenatal phenotype of patients with pathogenic variants in CSS genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378544 | PMC |
http://dx.doi.org/10.1016/j.gim.2022.04.010 | DOI Listing |
Clin Case Rep
September 2025
Department of Pediatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China.
Brachyolmia type 4 (BCYM4, OMIM 612847) is a rare skeletal dysplasia characterized by mild epiphyseal and metaphyseal abnormalities. We report a Chinese boy with brachyolmia caused by a novel compound heterozygous mutation in the gene. Prenatal ultrasound revealed shortened long bones, and his birth length was markedly reduced (45 cm, -3.
View Article and Find Full Text PDFEnviron Epidemiol
October 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Ohio.
Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".
View Article and Find Full Text PDFJCI Insight
September 2025
Edinburgh Medical School: Biomedical Sciences & Euan MacDonald Centre for M, University of Edinburgh, Edinburgh, United Kingdom.
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein. Several therapeutic approaches boosting SMN are approved for human patients, delivering remarkable improvements in lifespan and symptoms. However, emerging phenotypes, including neurodevelopmental comorbidities, are being reported in some treated SMA patients, indicative of alterations in brain development.
View Article and Find Full Text PDFMol Genet Genomic Med
September 2025
Department of Maternal-Fetal Medicine, Augusta University, Augusta, Georgia, USA.
Introduction: Spinal muscular atrophy (SMA), caused by pathogenic variants in the survival motor neuron (SMN) gene, is the most common genetic cause of mortality in children under the age of two. Prior reports of obstetric sonograms performed in pregnancies with severe forms of fetal SMA have discrepant findings that may stem from a failure to account for the SMN2 copy number.
Methods: We present a neonate diagnosed with SMA type 0 postnatally (0SMN1/1SMN2 genotype).