98%
921
2 minutes
20
Background Visual assessment remains the standard for evaluating emphysema at CT; however, it is time consuming, is subjective, requires training, and is affected by variability that may limit sensitivity to longitudinal change. Purpose To evaluate the clinical and imaging significance of increasing emphysema severity as graded by a deep learning algorithm on sequential CT scans in cigarette smokers. Materials and Methods A secondary analysis of the prospective Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study participants was performed and included baseline and 5-year follow-up CT scans from 2007 to 2017. Emphysema was classified automatically according to the Fleischner emphysema grading system at baseline and 5-year follow-up using a deep learning model. Baseline and change in clinical and imaging parameters at 5-year follow-up were compared in participants whose emphysema progressed versus those who did not. Kaplan-Meier analysis and multivariable Cox regression were used to assess the relationship between emphysema score progression and mortality. Results A total of 5056 participants (mean age, 60 years ± 9 [SD]; 2566 men) were evaluated. At 5-year follow-up, 1293 of the 5056 participants (26%) had emphysema progression according to the Fleischner grading system. This group demonstrated progressive airflow obstruction (forced expiratory volume in 1 second [percent predicted]: -3.4 vs -1.8), a greater decline in 6-minute walk distance (-177 m vs -124 m), and greater progression in quantitative emphysema extent (adjusted lung density: -1.4 g/L vs 0.5 g/L; percentage of lung voxels with CT attenuation less than -950 HU: 0.6 vs 0.2) than those with nonprogressive emphysema ( < .001 for each). Multivariable Cox regression analysis showed a higher mortality rate in the group with emphysema progression, with an estimated hazard ratio of 1.5 (95% CI: 1.2, 1.8; < .001). Conclusion An increase in Fleischner emphysema grade on sequential CT scans using an automated deep learning algorithm was associated with increased functional impairment and increased risk of mortality. ClinicalTrials.gov registration no. NCT00608764 © RSNA, 2022 See also the editorial by Grenier in this issue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434819 | PMC |
http://dx.doi.org/10.1148/radiol.213054 | DOI Listing |
Mol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.
In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.
View Article and Find Full Text PDFChaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFRadiol Artif Intell
September 2025
Department of Radiology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, No. 197 Ruijin Er Road, Shanghai 200025, China.
Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).
View Article and Find Full Text PDF