98%
921
2 minutes
20
Generating comprehensive and high-fidelity metabolomics data matrices from LC/HRMS data remains to be extremely challenging for population-scale large studies ( > 200). Here, we present a new data processing pipeline, the Intrinsic Peak Analysis (IDSL.IPA) R package (https://ipa.idsl.me), to generate such data matrices specifically for organic compounds. The IDSL.IPA pipeline incorporates (1) identifying potential C and C ion pairs in individual mass spectra; (2) detecting and characterizing chromatographic peaks using a new sensitive and versatile approach to perform mass correction, peak smoothing, baseline development for local noise measurement, and peak quality determination; (3) correcting retention time and cross-referencing peaks from multiple samples by a dynamic retention index marker approach; (4) annotating peaks using a reference database of / and retention time; and (5) accelerating data processing using a parallel computation of the peak detection and alignment steps for larger studies. This pipeline has been successfully evaluated for studies ranging from 200 to 1600 samples. By specifically isolating high quality and reliable signals pertaining to carbon-containing compounds in untargeted LC/HRMS data sets from larger studies, IDSL.IPA opens new opportunities for discovering new biological insights in the population-scale metabolomics and exposomics projects. The package is available in the R CRAN repository at https://cran.r-project.org/package=IDSL.IPA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177784 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.2c00120 | DOI Listing |
Environ Res
September 2025
Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, Barcelona, 08017, Spain. Electronic address:
Glyphosate (GLY) is the most widely used herbicide globally and is frequently detected in aquatic environments at low concentrations, raising concerns about its potential long-term effects on non-target organisms. However, the systemic metabolic disruptions of chronic GLY exposure in aquatic vertebrates remain poorly understood, especially at environmentally relevant concentrations. This study investigates the metabolic disruptions of GLY exposure in zebrafish (D.
View Article and Find Full Text PDFEnviron Int
August 2025
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092, Zurich, Switzerland. Electronic address:
Synthetic antioxidants (SAOs) are widely used additives in industrial and consumer products, yet their human exposure and fate throughout wastewater treatment remain poorly understood. This study investigates the occurrence of SAOs and their human metabolites in wastewater influent as well as their abatement in three wastewater treatment plants (WWTPs) employing both conventional and advanced treatment technologies. In vitro human liver S9 assays were performed to generate a SAO metabolite MS2 library containing over 2500 potential metabolites, which was matched against wastewater influent data.
View Article and Find Full Text PDFPLoS One
September 2025
UMR 152 PharmaDev, Université de Toulouse, UPS, IRD, Toulouse, France.
Artemisia annua L. (A. annua) is a medicinal herb that has been used for the last two millennia to treat various diseases.
View Article and Find Full Text PDFMolecules
August 2025
LCE, Aix Marseille University, 13331 Marseille, France.
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives.
View Article and Find Full Text PDFLife (Basel)
August 2025
Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Gebze 41400, Türkiye.
In this study, phenolic compounds of methanol extracts obtained from the leaves and branches of P.H. Davis and (K.
View Article and Find Full Text PDF