A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The relation between electrophysiology and BOLD-fMRI requires further elucidation. One approach for studying this relation is to find time-frequency features from electrophysiology that explain the variance of BOLD time-series. Convolution of these features with a canonical hemodynamic response function (HRF) is often required to model neurovascular coupling mechanisms and thus account for time shifts between electrophysiological and BOLD-fMRI data. We propose a framework for extracting the spatial distribution of these time-frequency features while also estimating more flexible, region-specific HRFs. The core component of this method is the decomposition of a tensor containing impulse response functions using the Canonical Polyadic Decomposition. The outputs of this decomposition provide insight into the relation between electrophysiology and BOLD-fMRI and can be used to construct estimates of BOLD time-series. We demonstrated the performance of this method on simulated data while also examining the effects of simulated measurement noise and physiological confounds. Afterwards, we validated our method on publicly available task-based and resting-state EEG-fMRI data. We adjusted our method to accommodate the multisubject nature of these datasets, enabling the investigation of inter-subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms. We thus also demonstrate how EEG features for modelling the BOLD signal differ across subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374895PMC
http://dx.doi.org/10.1002/hbm.25902DOI Listing

Publication Analysis

Top Keywords

canonical polyadic
8
polyadic decomposition
8
relation electrophysiology
8
electrophysiology bold-fmri
8
time-frequency features
8
bold time-series
8
neurovascular coupling
8
coupling mechanisms
8
extracting electrophysiological
4
electrophysiological correlates
4

Similar Publications