A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lanthanide-based upconverting nanoparticles (UCNPs) are largely sought-after for biomedical applications ranging from bioimaging to therapy. A straightforward strategy is proposed here using the naturally sourced polymer phytoglycogen to coencapsulate UCNPs with hydrophobic photosensitizers as an optical imaging platform and light-induced therapeutic agents. The resulting multifunctional sub-micrometer-sized luminescent beads are shown to be cytocompatible as carrier materials, which encourages the assessment of their potential in biomedical applications. The loading of UCNPs of various elemental compositions enables multicolor hyperspectral imaging of the UCNP-loaded beads, endowing these materials with the potential to serve as luminescent tags for multiplexed imaging or simultaneous detection of different moieties under near-infrared (NIR) excitation. Coencapsulation of UCNPs and Rose Bengal opens the door for potential application of these microcarriers for collagen crosslinking. Alternatively, coloading UCNPs with Chlorin e6 enables NIR-light triggered generation of reactive oxygen species. Overall, the developed encapsulation methodology offers a straightforward and noncytotoxic strategy yielding water-dispersible UCNPs while preserving their bright and color-tunable upconversion emission that would allow them to fulfill their potential as multifunctional platforms for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202107130DOI Listing

Publication Analysis

Top Keywords

biomedical applications
12
optical imaging
8
imaging platform
8
ucnps
6
potential
5
phytoglycogen encapsulation
4
encapsulation lanthanide-based
4
lanthanide-based nanoparticles
4
nanoparticles optical
4
imaging
4

Similar Publications