98%
921
2 minutes
20
Lumbar intervertebral disc degeneration (DD) disease is one of the main risk factors for low back pain and a leading cause of population absenteeism and disability worldwide. Despite a variety of biological studies, lumbar DD is not yet fully understood, partially because there are only few studies that use systematic and integrative approaches. This urges the need for studies that integrate different omics (including genomics and transcriptomics) measured on samples within a single cohort. This protocol describes a disease-oriented Russian disc degeneration study (RuDDS) biobank recruitment and analyses aimed to facilitate further omics studies of lumbar DD integrating genomic, transcriptomic and glycomic data. A total of 1,100 participants aged over 18 with available lumbar MRI scans, medical histories and biological material (whole blood, plasma and intervertebral disc tissue samples from surgically treated patients) will be enrolled during the three-year period from two Russian clinical centers. Whole blood, plasma and disc tissue specimens will be used for genotyping with genome-wide SNP-arrays, glycome profiling and RNA sequencing, respectively. Omics data will be further used for a genome-wide association study of lumbar DD with in silico functional annotation, analysis of plasma glycome and lumbar DD disease interactions and transcriptomic data analysis including an investigation of differential expression patterns associated with lumbar DD disease. Statistical tests applied in each of the analyses will meet the standard criteria specific to the attributed study field. In a long term, the results of the study will expand fundamental knowledge about lumbar DD development and contribute to the elaboration of novel personalized approaches for disease prediction and therapy. Additionally to the lumbar disc degeneration study, a RuDDS cohort could be used for other genetic studies, as it will have unique omics data. Trial registration number NCT04600544.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106166 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267384 | PLOS |
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDFCureus
August 2025
Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, BGR.
This report presents the case of a 36-year-old man complaining of chronic low back pain and numbness along the posterolateral surface of the right leg. Magnetic resonance imaging (MRI) revealed a disc degeneration and protrusion at the L-S level and an extensive fluid-equivalent formation with a craniocaudal dimension of 8 cm at the S-S level. Initially, due to the minimal clinical complaints, the cyst was considered asymptomatic.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.
View Article and Find Full Text PDFBackground: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.
Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).
Medicine (Baltimore)
September 2025
The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.
View Article and Find Full Text PDF