Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although loneliness itself is a natural emotion, prolonged loneliness is detrimental to human health. Despite its detrimental effect, few loneliness-related neuroimaging studies have been published and some have limitations on the sample size number. This study aims to find the difference in resting-state functional connectivity associated with loneliness within a big sample size via the seed-based approach. Functional connectivity analysis was performed on a large cohort of young adults (N = 1336) using the seed-based functional connectivity approach to address the concern from previous studies. The analysis yielded statistically significant positive correlations between loneliness and functional connectivities between the inferior frontal gyrus and supplementary motor area, precentral gyrus, and superior parietal lobule. Additionally, the analysis replicated a finding from a previous study, which is increased functional connectivities between the inferior frontal gyrus and supplementary motor area. In conclusion, greater loneliness is reflected by stronger functional connectivity of the visual attention brain area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098468PMC
http://dx.doi.org/10.1038/s41598-022-11724-5DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
sample size
8
functional connectivities
8
connectivities inferior
8
inferior frontal
8
frontal gyrus
8
gyrus supplementary
8
supplementary motor
8
motor area
8
loneliness
6

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Bridging electrostatic screening and ion transport in lithium salt-doped ionic liquids.

J Chem Phys

September 2025

Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.

Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.

View Article and Find Full Text PDF

We develop the theory justifying the application of the density-based basis-set correction (DBBSC) method to double-hybrid approximations in order to accelerate their basis convergence. We show that, for the one-parameter double hybrids based on the adiabatic connection, the exact dependence of the basis-set correction functional on the coupling-constant parameter λ involves a uniform coordinate scaling by a factor 1/λ of the density and of the basis functions. Neglecting this uniform coordinate scaling corresponds essentially to the recent work of Mester and Kállay, J.

View Article and Find Full Text PDF

Accurately modeling volume-dependent properties of water remains a challenge for density functional theory (DFT), with widely used functionals failing to reproduce key features of the water density isobar, including its shape, density, and temperature of the density maximum. Here, we compare the performance of the RPBE-D3 and vdW-DF-cx functionals using replica exchange molecular dynamics (MD) driven by machine-learned force fields. Our simulations reveal that vdW-DF-cx predicts the water density more accurately than RPBE-D3 and reproduces the isobar closely between 307 and 340 K.

View Article and Find Full Text PDF