A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Role of non-specific interactions in the phase-separation and maturation of macromolecules. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase separation of biomolecules could be mediated by both specific and non-specific interactions. How the interplay between non-specific and specific interactions along with polymer entropy influences phase separation is an open question. We address this question by simulating self-associating molecules as polymer chains with a short core stretch that forms the specifically interacting functional interface and longer non-core regions that participate in non-specific/promiscuous interactions. Our results show that the interplay of specific (strength, ϵsp) and non-specific interactions (strength, ϵns) could result in phase separation of polymers and its transition to solid-like aggregates (mature state). In the absence of ϵns, the polymer chains do not dwell long enough in the vicinity of each other to undergo phase separation and transition into a mature state. On the other hand, in the limit of strong ϵns, the assemblies cannot transition into the mature state and form a non-specific assembly, suggesting an optimal range of interactions favoring mature multimers. In the scenario where only a fraction (Nfrac) of the non-core regions participate in attractive interactions, we find that slight modifications to either ϵns or Nfrac can result in dramatically altered self-assembled states. Using a combination of heterogeneous and homogeneous mix of polymers, we establish how this interplay between interaction energies dictates the propensity of biomolecules to find the correct binding partner at dilute concentrations in crowded environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119624PMC
http://dx.doi.org/10.1371/journal.pcbi.1010067DOI Listing

Publication Analysis

Top Keywords

phase separation
16
non-specific interactions
12
mature state
12
interactions interplay
8
polymer chains
8
non-core regions
8
regions participate
8
transition mature
8
interactions
7
role non-specific
4

Similar Publications