Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Subcellular localization of proteins acting on the endomembrane system is primarily regulated via membrane trafficking. To obtain and maintain the correct protein composition of the plasma membrane and membrane-bound organelles, the loading of selected cargos into transport vesicles is critically regulated at donor compartments by adaptor proteins binding to the donor membrane, the cargo molecules and the coat-protein complexes, including the clathrin coat. The ANTH/ENTH/VHS domain-containing protein superfamily generally comprises a structurally related ENTH, ANTH, or VHS domain in the N-terminal region and a variable C-terminal region, which is thought to act as an adaptor during transport vesicle formation. This protein family is involved in various plant processes, including pollen tube growth, abiotic stress response and development. In this review, we provide an overview of the recent findings on ANTH/ENTH/VHS domain-containing proteins in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14368DOI Listing

Publication Analysis

Top Keywords

anth/enth/vhs domain-containing
12
membrane trafficking
8
domain-containing proteins
8
proteins plants
8
membrane
4
trafficking functions
4
functions anth/enth/vhs
4
proteins
4
plants subcellular
4
subcellular localization
4

Similar Publications

Subcellular localization of proteins acting on the endomembrane system is primarily regulated via membrane trafficking. To obtain and maintain the correct protein composition of the plasma membrane and membrane-bound organelles, the loading of selected cargos into transport vesicles is critically regulated at donor compartments by adaptor proteins binding to the donor membrane, the cargo molecules and the coat-protein complexes, including the clathrin coat. The ANTH/ENTH/VHS domain-containing protein superfamily generally comprises a structurally related ENTH, ANTH, or VHS domain in the N-terminal region and a variable C-terminal region, which is thought to act as an adaptor during transport vesicle formation.

View Article and Find Full Text PDF