Effective active learning in digital pathology: A case study in tumor infiltrating lymphocytes.

Comput Methods Programs Biomed

Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they require a large amount of annotated training data from expert pathologists. The aim of this study is to minimize the data annotation need in these analyses.

Methods: Active learning (AL) is an iterative approach to training deep learning models. It was used in our context with a Tumor Infiltrating Lymphocytes (TIL) classification task to minimize annotation. State-of-the-art AL methods were evaluated with the TIL application and we have proposed and evaluated a more efficient and effective AL acquisition method. The proposed method uses data grouping based on imaging features and model prediction uncertainty to select meaningful training samples (image patches).

Results: An experimental evaluation with a collection of cancer tissue images shows that: (i) Our approach reduces the number of patches required to attain a given AUC as compared to other approaches, and (ii) our optimization (subpooling) leads to AL execution time improvement of about 2.12×.

Conclusions: This strategy enabled TIL based deep learning analyses using smaller annotation demand. We expect this approach may be used to build other analyses in digital pathology with fewer training samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.106828DOI Listing

Publication Analysis

Top Keywords

deep learning
12
active learning
8
digital pathology
8
tumor infiltrating
8
infiltrating lymphocytes
8
training samples
8
learning
5
effective active
4
learning digital
4
pathology case
4

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Magn Reson Med

September 2025

Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.

Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF