Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
(SPPM) with high adsorption capacity and good cycle adsorption performance was prepared by wet spinning technology. The SPPM was characterised by the scanning electron microscope (SEM), specific surface area test (BET), energy dispersive spectrum (EDS) thermal gravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), and x-ray photoelectron spectroscopy (XPS). The results showed that the surface of SPPM is rough and porous, with good pore structure and thermal stability, and mercury ions (Hg(II)) have been successfully adsorbed on SPPM. At the same time, the effects of adsorption conditions (Hg(II) initial concentration, pH, adsorption time, and temperature) on the adsorption performance of SPPM were studied. Results from the adsorption experiment showed that the adsorption capacity of SPPM for Hg(II) can reach 426 mg/g. After four adsorption and desorption experiments, the adsorption capacity can reach 375 mg/g, which indicates that SPPM has good cycle adsorption performance. The adsorption kinetics was better described by the Pseudo-second-order kinetic, and their adsorption isotherms were fitted for the Langmuir model. The obtained results showed that SPPM is an available, economical adsorbent and was found suitable for removing Hg(II) from an aqueous solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2022.2071644 | DOI Listing |