A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Direct reductive amination (DRA) is a ubiquitous reaction in organic chemistry. This transformation between a carbonyl group and an amine is most often achieved by using a super stoichiometric amount of hazardous hydride reagents, thus being incompatible with many sensitive functional groups. DRA could also be achieved by means of chemo- or biocatalysis, thereby attracting the interest of industry as well as academic laboratories due to the virtually perfect atom economy. Although DRAs are well-established for substrate pairs such as aldehydes with either 1° or 2° amines as well as ketones with 1° amines, the current methodologies are limited in the case of ketones with 2° amines. Herein, we present a general DRA protocol that overcomes this major limitation by means of iridium catalysis. The applicability of the methodology is demonstrated by accessing an unprecedented range of biologically relevant tertiary amines starting from both aliphatic ketones and aliphatic amines. The choice of a disphosphane ligand (Josiphos A or Xantphos) is essential for the success of the transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202201078DOI Listing

Publication Analysis

Top Keywords

direct reductive
8
reductive amination
8
2° amines
8
amines
6
iridium-catalyzed direct
4
ketones
4
amination ketones
4
ketones secondary
4
secondary amines
4
amines breaking
4

Similar Publications