A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Conformational Rearrangements in the Redox Cycling of NADPH-Cytochrome P450 Reductase from Explored with FRET and Pressure-Perturbation Spectroscopy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NADPH-cytochrome P450 reductase (CPR) from (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. This transition is triggered by electron transfer between the FAD and FMN and provides access of the partner protein to the electron-donating FMN domain. To characterize the electron transfer mechanisms in the monolignol biosynthetic pathway better, we explore the conformational transitions in SbCPR with rapid scanning stop-flow and pressure-perturbation spectroscopy. We used FRET between a pair of donor and acceptor probes incorporated into the FAD and FMN domains of SbCPR, respectively, to characterize the equilibrium between the open and closed states and explore its modulation in connection with the redox state of the enzyme. We demonstrate that, although the closed conformation always predominates in the conformational landscape, the population of open state increases by order of magnitude upon the formation of the disemiquinone state. Our results are consistent with several open conformation sub-states differing in the volume change (Δ) of the opening transition. While the Δ characteristic of the oxidized enzyme is as large as -88 mL/mol, the interaction of the enzyme with the nucleotide cofactor and the formation of the double-semiquinone state of CPR decrease this value to -34 and -18 mL/mol, respectively. This observation suggests that the interdomain electron transfer in CPR increases protein hydration, while promoting more open conformation. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030436PMC
http://dx.doi.org/10.3390/biology11040510DOI Listing

Publication Analysis

Top Keywords

electron transfer
12
nadph-cytochrome p450
8
p450 reductase
8
pressure-perturbation spectroscopy
8
fad fmn
8
conformational transitions
8
open conformation
8
conformational
5
open
5
conformational rearrangements
4

Similar Publications