A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Combined machine learning and pharmacophore based virtual screening approaches to screen for antibiofilm inhibitors targeting LasR of . | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

, a virulent pathogen affects patients with cystic fibrosis and nosocomial infections. Quorum sensing (QS) mechanism plays a crucial role in causing these ailments by mediating biofilm formation and expressing virulent genes. A novel approach to circumvent this bacterial infection is by hindering its QS network. Targeting LasR of system serves beneficial as it holds the top position in QS system cascade. Here, we have integrated machine learning, pharmacophore based virtual screening, molecular docking and simulation studies to look for new leads as inhibitors for LasR. Support vector machine (SVM) learning algorithm was used to generate QSAR models from 66 antagonist dataset. The top three models resulted in correlation coefficient (R) values of 0.67, 0.86, and 0.91, respectively. The correlation coefficient (R) values on external test set were found to be 0.62, 0.57, and 0.55, respectively. A four-point pharmacophore model was developed. The pharmacophore hypothesis AAAD_1 was used to screen for potential leads against MolPort database in ZincPharmer. The leads which showed predicted pIC50 value of >8.00 by SVM models were subjected to docking analysis that reranked the compounds based on docking scores. Four top leads namely ZINC3851967 N-[3,5-bis(trifluoromethyl)phenyl]-5-tert-butyl-6-chloropyrazine-2-carboxamide, ZINC4024175 4-Amino-1-[(2R,3S,4S,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-oxopyrimidine-5-carbonitrile, ZINC2125703 N-[(5-Methoxy-4,7-dimethyl-2-oxo-2H-chromen-3-yl)acetyl]-beta-alanine, and ZINC3851966 N-[3,5-Bis(trifluoromethyl)phenyl]5-tert-butylpyrazine-2-carboxamide were selected. These compounds were checked for its stability by performing a molecular dynamics simulation for a period of 100 ns. The ADME properties of the leads were also determined. Hence, the compounds identified in this study can be used as possible leads for developing a novel inhibitor for LasR.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2064331DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning pharmacophore
8
pharmacophore based
8
based virtual
8
virtual screening
8
targeting lasr
8
correlation coefficient
8
coefficient values
8
leads
6
combined machine
4

Similar Publications