Conformational and structural stability of and 2-propylthiols: a revisit.

RSC Adv

Department of Chemistry, IIT (BHU) Varanasi UP India

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conformational and structural stability of -propanethiol (nP) is revisited owing to the prevailing ambiguity in the literature reported hitherto, and the rationale for 2-propanethiol's (2P) most stable conformers is analyzed. Based on the rotation around the C-C and C-S bonds, four conformers for nP and two conformers for 2-propanethiol (2P) were found to have the lowest energies at the CCSD/cc-pVDZ level of theory. The two conformers of 2P are anti (T), and gauche (G), and those of nP are T-G, G-G, T-T, and G-T. Rotational barriers, geometrical parameters, fundamental vibrational modes, and energy parameters reported herein agree exceedingly well with the reported experimental values for nP and 2P molecules. Furthermore, natural bond orbital (NBO), frontier molecular orbital (FMO), Mulliken charge (MC), electrostatic potential charge (ESP), and vibrational mode analyses were carried out to get a better understanding of both the thiols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973430PMC
http://dx.doi.org/10.1039/d2ra01034hDOI Listing

Publication Analysis

Top Keywords

conformational structural
8
structural stability
8
stability 2-propylthiols
4
2-propylthiols revisit
4
revisit conformational
4
stability -propanethiol
4
-propanethiol revisited
4
revisited prevailing
4
prevailing ambiguity
4
ambiguity literature
4

Similar Publications

Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.

View Article and Find Full Text PDF

Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).

View Article and Find Full Text PDF

Phosphorylation plays an important role in the activity of CDK2 and inhibitor binding, but the corresponding molecular mechanism is still insufficiently known. To address this gap, the current study innovatively integrates molecular dynamics (MD) simulations, deep learning (DL) techniques, and free energy landscape (FEL) analysis to systematically explore the action mechanisms of two inhibitors (SCH and CYC) when CDK2 is in a phosphorylated state and bound state of CyclinE. With the help of MD trajectory-based DL, key functional domains such as the loops L3 loop and L7 are successfully identified.

View Article and Find Full Text PDF

, a causative agent of lymphatic filariasis, relies on its endosymbiont for survival. MurE ligase, a key enzyme in peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the endosymbiont of (MurE).

View Article and Find Full Text PDF

Interaction studies by NMR on the multivalent interaction between chondroitin sulfate E derivatives and the langerin receptor.

Org Biomol Chem

September 2025

Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, Spain.

In this paper, we present the NMR analysis of multivalent compounds displaying chondroitin sulfate E (CS-E) disaccharide ligands and their interaction with langerin. The disaccharides correspond to the two alternative sequences of CS-E: GlcA-GalNAc and GalNAc-GlcA. Firstly, we studied the conformation of the two corresponding series of glycodendrimers free in solution and in the presence of langerin.

View Article and Find Full Text PDF