98%
921
2 minutes
20
An external magnetic field has recently been applied in reaction processes to promote movement and avoid agglomeration of magnetic particles, and also reduce the activation energy through improving the gas-solid contact. In this work, the effect of an external magnetic field on reactant gas diffusivity and reactivity in CO hydrogenation within a confined-space catalyst was investigated for the first time using a conventional reactor packed with a bimetallic 5Fe-5Co/ZSM-5 molecular sieve catalyst. The synergistic effect between magnetic field and limited mass transfer within zeolite cavities improved the mass transfer ability and reaction phenomena of the reactant molecules, leading to enhancement of catalytic activity with tailored reaction pathways. As a result, CO conversion and CH selectivity were increased by factors of 1.9 and 1.3 compared to those without a magnetic field. These synergistic interactions are able to provide an innovative challenge for green and sustainable chemical processes and separation processes by means of selective reactant and product mass transfer designed for selective catalytic conversion in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694129 | PMC |
http://dx.doi.org/10.1039/d0ra09870a | DOI Listing |
Nano Lett
September 2025
Depto. Polimeros y Materiales Avanzados: Fisica, Quimica y Tecnologia, Universidad del País Vasco, UPV/EHU, 20018 San Sebastian, Spain.
We demonstrate a novel approach to controlling and stabilizing magnetic skyrmions in ultrathin multilayer nanostructures through spatially engineered magnetostatic fields generated by ferromagnetic nanorings. Using analytical modeling and micromagnetic simulations, we show that the stray fields from a Co/Pd ferromagnetic ring with out-of-plane magnetic anisotropy significantly enhance the Néel-type skyrmion stability in an Ir/Co/Pt nanodot, even stabilizing the skyrmion in the absence of Dzyaloshinskii-Moriya interactions. We demonstrate precise control over the skyrmion size and stability.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Owing to their distinctive thickness and physical attributes, two-dimensional (2D) materials have exhibited considerable promise in the field of microelectronic devices. Notably, 2D magnetic materials that maintain long-range magnetic order and can be readily modulated by external fields have garnered substantial attention. However, CrSBr, despite being a 2D van der Waals (vdW) semiconducting magnet with an appropriate band gap and stability in air, faces significant hindrance for practical utilization due to its Curie temperature () of 146 K.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institution Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), Madrid, 28049, Spain.
Achieving magnetic ordering in low-dimensional materials remains a key objective in the field of magnetism. Herein, coordination chemistry emerges as a powerful discipline to promote the stabilization of magnetism at the nanoscale. We present a thorough study of exemplary two-dimensional metal-organic nanoarchitectures synthesized on a Au(111) substrate, which are rationalized by using surface-science techniques and theoretical calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.
Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.
View Article and Find Full Text PDFWounds
August 2025
Faculty of Physical Therapy, Cairo University, Cairo, Giza, Egypt.
Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.
Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.