Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The synthesis, structure and properties of three hybrid polymers based on zinc arylphosphates are described in this study. Zinc bis(diphenylphosphate) (ZnDPhP) was obtained as needle-like crystals containing hexagonally packed, homochiral [Zn(DPhP)] helical chains. The XRD and DSC studies revealed that upon heating, ZnDPhP undergoes a reversible thermal transition at 160 °C with expansion mainly perpendicular to its -axis. Zinc phenylphosphate hydrate (ZnMPhP-H) formed plate-like particles with an average thickness of less than 1 μm and much thinner nanolayers with a basal spacing of 15.5 Å. ZnMPhP-H was easily and reversibly dehydrated to its anhydrous form, ZnMPhP-A, which exhibited a somewhat larger basal spacing of 16.5 Å and the capacity for amine intercalation. The thermal decomposition of ZnDPhP or ZnMPhP-A began around 250 °C, resulting in the formation of solid mixtures of zinc phosphates and electron-conducting carbonaceous phases. The bulk electrical conductivities of the poly(vinylidene fluoride)-based composites containing the ZnDPhP pyrolyzates reached 0.1-0.2 S cm. Upon mixing with silicone oil, all the synthesized hybrid polymers formed fluids that exhibit significant negative electrorheological effects and have potential for application in electroresponsive smart materials. The application of an electric field during the crosslinking of such systems affected the viscoelastic properties of the resultant solid composites, while the cured systems showed rather small electrorheological effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695067PMC
http://dx.doi.org/10.1039/d0ra09493eDOI Listing

Publication Analysis

Top Keywords

hybrid polymers
12
polymers based
8
based zinc
8
basal spacing
8
electrorheological effects
8
zinc
5
zinc phenylphosphates
4
phenylphosphates synthesis
4
synthesis characterization
4
characterization applications
4

Similar Publications

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Optimizing bio-imaging with computationally designed polymer nanoparticles.

J Mater Chem B

September 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Conjugated polymer nanoparticles (CPNs), especially poly(-phenylene ethynylene) nanoparticles (PPE-NPs), are promising candidates for bio-imaging due to their high photostability, adjustable optical characteristics, and biocompatibility. Despite their potential, the fluorescence mechanisms of these nanoparticles are not yet fully understood. In this work, we modeled a spherical PPE-NP in a water environment using 30 PPE dimer chains.

View Article and Find Full Text PDF

To explore the clinicopathological and molecular genetic characteristics of anaplastic lymphoma kinase (ALK)-rearranged renal cell carcinoma (RCC), including a rare case with the TPM1-ALK gene subtype. Three cases of ALK-rearranged RCC diagnosed in the Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China from January 2020 to December 2024 were collected. Their clinical pathological and next-generation sequencing (NGS) data were analyzed.

View Article and Find Full Text PDF