A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Autonomic nervous system receptor-mediated regulation of mast cell degranulation modulates the inflammation after corneal epithelial abrasion. | LitMetric

Autonomic nervous system receptor-mediated regulation of mast cell degranulation modulates the inflammation after corneal epithelial abrasion.

Exp Eye Res

International Ocular Surface Research Center, Institute of Ophthalmology, Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mast cells (MCs) regulate wound healing and are influenced by the autonomic nervous system (ANS). However, the underlying mechanisms affecting wound healing outcomes remain elusive. Here, we explored the specific role of the ANS by regulating MC degranulation following corneal epithelium abrasion. A mouse model of corneal abrasion was established by mechanically removing a 2-mm central epithelium. Wound closure, neutrophil infiltration, and transcription of injured corneas were investigated using whole-mount immunostaining, flow cytometry, and RNA-sequencing analysis, respectively. Inhibition of MC degranulation by the MC stabilizers cromolyn sodium and lodoxamide tromethamine increased the infiltration of neutrophils and delayed healing of abraded corneas. Moreover, transcriptomic profiling analysis showed that purified MCs from the limbus expressed adrenergic and cholinergic receptors. Pharmacological manipulation and sympathectomy with 6-hydroxydopamine confirmed that sympathetic nervous system signaling inhibited MC degranulation after corneal abrasion, whereas parasympathetic nervous system signaling enhanced MC degranulation. We conclude that normal degranulation of MCs in the corneal limbus and crosstalk between the ANS and MCs are crucial for the appropriate control of inflammation and the repair progress of wounded corneas. This suggests a potential approach for improving defective corneal wound healing by the administration of clinically available autonomic activity-modulating agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2022.109065DOI Listing

Publication Analysis

Top Keywords

nervous system
16
wound healing
12
autonomic nervous
8
degranulation corneal
8
corneal abrasion
8
system signaling
8
degranulation
6
corneal
6
system
4
system receptor-mediated
4

Similar Publications