Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A deep learning algorithm was developed to automatically identify, segment, and quantify geographic atrophy (GA) based on optical attenuation coefficients (OACs) calculated from optical coherence tomography (OCT) datasets. Normal eyes and eyes with GA secondary to age-related macular degeneration were imaged with swept-source OCT using 6 × 6 mm scanning patterns. OACs calculated from OCT scans were used to generate customized composite OAC images. GA lesions were identified and measured using customized sub-retinal pigment epithelium (subRPE) OCT images. Two deep learning models with the same U-Net architecture were trained using OAC images and subRPE OCT images. Model performance was evaluated using DICE similarity coefficients (DSCs). The GA areas were calculated and compared with manual segmentations using Pearson's correlation and Bland-Altman plots. In total, 80 GA eyes and 60 normal eyes were included in this study, out of which, 16 GA eyes and 12 normal eyes were used to test the models. Both models identified GA with 100% sensitivity and specificity on the subject level. With the GA eyes, the model trained with OAC images achieved significantly higher DSCs, stronger correlation to manual results and smaller mean bias than the model trained with subRPE OCT images (0.940 ± 0.032 vs 0.889 ± 0.056, p = 0.03, paired t-test, r = 0.995 vs r = 0.959, mean bias = 0.011 mm vs mean bias = 0.117 mm). In summary, the proposed deep learning model using composite OAC images effectively and accurately identified, segmented, and quantified GA using OCT scans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973176 | PMC |
http://dx.doi.org/10.1364/BOE.449314 | DOI Listing |