Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 10, 5 × 10 and 2.5 × 10 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876739PMC
http://dx.doi.org/10.1038/s41591-022-01762-xDOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
12
adults living
8
living hiv
8
adeno-associated viral
8
produced vrc07
8
vrc07 three
8
three participants
8
ada response
8
vrc07
6
safety tolerability
4

Similar Publications

Administration of HIV-1 neutralizing antibodies can suppress viremia and prevent infection . However, clinical use is challenged by broad envelope sequence diversity and rapid emergence of viral escape . Here, we performed single B cell profiling of 32 top HIV-1 elite neutralizers to identify broadly neutralizing antibodies (bNAbs) with highest potency and breadth for clinical application.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) show promise for HIV treatment and prevention, but are vulnerable to resistance evolution. Comprehensively understanding in vivo viral escape from individual bNAbs is necessary to design bNAb combinations that will provide durable responses. We characterize viral escape from two such bNAbs, 10-1074 and 3BNC117, using deep, longitudinal sequencing of full length HIV envelope (env) genes from study participants treated with bNAb monotherapy.

View Article and Find Full Text PDF

Extensive mutations in SARS-CoV-2 spike protein have rendered most therapeutic monoclonal antibodies (mAbs) ineffective. However, here we describe VYD222 (pemivibart), a human mAb re-engineered from ADG20 (adintrevimab), which maintains potency despite substantial virus evolution. VYD222 received FDA Emergency Use Authorization for pre-exposure prophylaxis of COVID-19 in certain immunocompromised adults and adolescents.

View Article and Find Full Text PDF

Introduction: Amid the persistent threat of future pandemics, the continuous evolution of SARS-CoV-2 exposed critical challenges for vaccine efficacy and therapeutic interventions, highlighting the need for rapid and adaptable approaches to respond to immune escape variants.

Methods: Here, we report the use of immortalized B cell libraries from human peripheral blood mononuclear cells (PBMCs) and tonsil tissues to uncover B cell clones exhibiting cross-reactive neutralization against various SARS-CoV-2 variants and perform directed evolution of immortalized B cell clones to produce antibodies with improved binding and neutralization against emerging SARS-CoV-2 variants.

Results: Immortalization of PBMC and tonsil-derived human B cells was achieved through transduction with retroviral vectors encoding apoptosis inhibitors, yielding transduction efficiencies of 67.

View Article and Find Full Text PDF

B cell receptor repertoires identified by next-generation sequencing showed signatures associated with incomplete immune reconstitution in people living with HIV.

Clin Immunol

August 2025

Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin 150081, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medica

Incomplete immune reconstitution poses a significant challenge for anti-retroviral therapy (ART) in HIV-infected individuals. The role of B cell receptors (BCRs) in immune reconstitution, a critical aspect of the immune system, has not been well elucidated in ART-experienced people. We analyzed the BCR heavy chain repertoire in immune non-responders (INRs) and immune responders (IRs) by next-generation sequencing.

View Article and Find Full Text PDF