98%
921
2 minutes
20
Blood platelet dysfunctions are strongly involved in the development of the micro- and macrovascular complications in diabetes mellitus (DM). However, the molecular causes of abnormal platelet activation in DM remain unclear. Experimental data suggests that platelet mitochondria can regulate the prothrombotic phenotype of platelets, and changes in these organelles may influence platelet activation and modify platelet responses to stimulation. The present study evaluates the impact of DM on mitochondrial respiratory parameters and blood platelet activation/reactivity in a rat model of experimental diabetes following 1, 2.5 and 5 months of streptozotocin (STZ)-induced diabetes. Moreover, a mild inhibition of the mitochondrial respiratory chain with the use of metformin under in vitro and in vivo conditions was tested as a method to reduce platelet activation and reactivity. The platelets were studied with a combination of flow cytometry and advanced respirometry. Our results indicate that prolonged exposure of blood platelets to high concentrations of glucose, as in diabetes, can result in elevated blood platelet mitochondrial respiration; this may be an effect of cell adaptation to the high availability of energy substrates. However, as these alterations occur later than the changes in platelet activation/reactivity, they may not constitute the major reason for abnormal platelet functioning in DM. Moreover, metformin was not able to inhibit platelet activation and reactivity under in vitro conditions despite causing a decrease in mitochondrial respiration. This indicates that the beneficial effect of metformin on the coagulation system observed in vivo can be related to other mechanisms than via the inhibition of platelet activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8998700 | PMC |
http://dx.doi.org/10.3390/ijms23073666 | DOI Listing |
Mater Today Bio
October 2025
Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.
Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China.
Essential thrombocythemia (ET) is a myeloproliferative neoplasm (MPN) characterized by abnormal megakaryocyte proliferation and a markedly elevated platelet count, which predisposes patients to thrombotic or hemorrhagic events. Approximately 50%-60% of ET patients harbor a JAK2 V617F mutation. This mutation drives constitutive JAK kinase activation, promoting megakaryocyte proliferation and platelet production, while potentially activating inflammatory pathways and damaging vascular endothelium.
View Article and Find Full Text PDFRheumatol Int
September 2025
Clinical Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Kraków, Jakubowskiego 2, Kraków, 30-688, Poland.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by complex disturbances in both innate and adaptive immune responses, often leading to multi-organ involvement. One of the key features of SLE pathogenesis is endothelial dysfunction, which contributes to immune cell infiltration and vascular inflammation. In this context, adhesion molecules such as platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) may reflect the degree of endothelial activation.
View Article and Find Full Text PDFActa Anaesthesiol Scand
October 2025
Centre for Anaesthesiological Research, Department of Anaesthesiology, Zealand University Hospital, Køge, Denmark.
Background: Multiple organ dysfunction syndrome (MODS) in critical illness involves dysregulated immune and inflammatory responses, endotheliopathy, and coagulation activation. We investigated how three types of endotheliopathy biomarkers relate to pro- and anti-inflammatory responses and clinical outcomes in intensive care unit (ICU) patients.
Methods: In this secondary, explorative analysis of a prospective single-centre cohort (n = 459), we assessed associations between endotheliopathy biomarkers (syndecan-1, soluble thrombomodulin (sTM), platelet endothelial cell adhesion molecule-1 (PECAM-1)) and inflammatory biomarkers (pro-inflammatory: IFN-ϒ, IL-1β, IL-2, IL-6, IL-8, IL-12p70, TNF-α; anti-inflammatory: IL-4, IL-10, IL-13) at ICU admission using linear regression.
Int J Toxicol
September 2025
Department of Cardiology, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China.
Platelet hyperactivation represents a significant risk factor for atherosclerotic cardiovascular diseases. This study investigated the expression and functional roles of integrin αvβ3 and (Multimerin 1) MMRN1 in platelets from atherosclerotic conditions and evaluated the therapeutic potential of integrin αvβ3 antagonism in atherosclerotic progression. We examined the expression patterns of αvβ3 and MMRN1 in platelets from healthy controls, patients with coronary heart disease (CHD), and patients with acute myocardial infarction (AMI) using qRT-PCR and ELISA techniques.
View Article and Find Full Text PDF