Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study aimed to investigate the protective effects of ganoderic acids (GA) from against liver injury and intestinal microbial disorder in mice with excessive alcohol intake. Results showed GA supplement significantly inhibited the abnormal elevation of the liver index, serum lipid parameters, aspartate aminotransferase and alanine aminotransferase in mice exposed to alcohol intake, and also significantly protected the excessive lipid accumulation and pathological changes. Alcohol-induced oxidative stress in the liver was significantly ameliorated by GA intervention through reducing the levels of maleic dialdehyde and lactate dehydrogenase and increasing the levels of glutathione, catalase, superoxide dismutase and alcohol dehydrogenase. Intestinal microbiota profiling demonstrated GA intervention modulated the composition of intestinal microflora by increasing the levels of , , , and decreasing the level. Furthermore, liver metabolomic profiling suggested GA intervention had a remarkable regulatory effect on liver metabolism with excessive alcohol consumption. Moreover, GA intervention regulated mRNA levels of alcohol metabolism, fatty lipid metabolism, oxidative stress, bile acid biosynthesis and metabolism-related genes in the liver. Conclusively, these findings demonstrate GA intervention can significantly relieve alcoholic liver injury and it is hopeful to become a new functional food ingredient for the prevention of alcoholic liver injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997615 | PMC |
http://dx.doi.org/10.3390/foods11070949 | DOI Listing |