A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Preferences for using the London Underground during the COVID-19 pandemic. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The COVID-19 pandemic has drastically impacted people's travel behaviour and introduced uncertainty in the demand for public transport. To investigate user preferences for travel by London Underground during the pandemic, we conducted a stated choice experiment among its pre-pandemic users (N = 961). We analysed the collected data using multinomial and latent class logit models. Our discrete choice analysis provides two sets of results. First, we derive the crowding multiplier estimate of travel time valuation (i.e., the ratio of the value of travel time in uncrowded and crowded situations) for London underground users. The results indicate that travel time valuation of Underground users increases by 73% when it operates at technical capacity. Second, we estimate the sensitivity of the preference for the London Underground relative to the epidemic situation (confirmed new COVID-19 cases) and interventions (vaccination rates and mandatory face masks). The sensitivity analysis suggests that making face masks mandatory is a main driver for recovering the demand for the London underground. The latent class model reveals substantial preference heterogeneity. For instance, while the average effect of mandatory face masks is positive, the preferences of 30% of pre-pandemic users for travel by the Underground are negatively affected. The positive effect of mandatory face masks on the likelihood of taking the Underground is less pronounced among males with age below 40 years, and a monthly income below 10,000 GBP. The estimated preference sensitivities and crowding multipliers are relevant for supply-demand management in transit systems and the calibration of advanced epidemiological models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983609PMC
http://dx.doi.org/10.1016/j.tra.2022.03.033DOI Listing

Publication Analysis

Top Keywords

london underground
20
face masks
16
travel time
12
mandatory face
12
underground
8
covid-19 pandemic
8
pre-pandemic users
8
latent class
8
time valuation
8
underground users
8

Similar Publications