Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Surface engineering of upconverting nanoparticles (UCNPs) is crucial for their bioanalytical applications. Here, an antibody specific to cardiac troponin I (cTnI), an important biomarker for acute myocardial infection, was covalently immobilized on the surface of UCNPs to prepare a label for the detection of cTnI biomarker in an upconversion-linked immunoassay (ULISA). Core-shell UCNPs (NaYF:Yb,Tm@NaYF) were first coated with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and then conjugated to antibodies. The morphology (size and uniformity), hydrodynamic diameter, chemical composition, and amount of coating on the of UCNPs, as well as their upconversion luminescence, colloidal stability, and leaching of Y ions into the surrounding media, were determined. The developed ULISA allowed reaching a limit of detection (LOD) of 0.13 ng/ml and 0.25 ng/ml of cTnI in plasma and serum, respectively, which represents 12- and 2-fold improvement to conventional enzyme-linked immunosorbent based on the same immunoreagents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123400 | DOI Listing |