A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source. | LitMetric

Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.

J Contam Hydrol

Dept. of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The surfactant-enhanced gas sparging process designed to specifically target the source zone of an organic contaminant in an aquifer with minimal usage of injected additives was investigated using a physical model. Aqueous solutions of the anionic surfactant Sodium dodecylbenzne sulfonate (SDBS) and/or the thickener Sodium carboxymethylcellulose (SCMC) were applied in a contaminated horizontal layer in the simulated laboratory aquifer model followed by gas sparging. Fluorescein sodium salt (FSS) was added to the SDBS/SCMC solutions and represented the organic contaminant. Air and ozone were injected to generate gas sparging. A modified surfactant-enhanced ozone sparging method was also tested by applying additional air venting ports installed in the aquifer above the gas injection zone. Both non-aqueous phase liquid (NAPL) and water-dissolved TCA were applied to the SDBS-applied region to evaluate the removal of contaminants during gas sparging. A significant expansion of the de-saturated zone for the SDBS-applied region was observed during air sparging. During ozone sparging, the fluorescence by FSS in the SDBS-applied layer disappeared over a much wider range than that of the control experiment. SCMC application enhanced the performance of the SDBS-applied gas sparging process. The TCA mass removed by volatilization during air sparging from the SDBS-applied layer was 2.3 times the application in the absence of SDBS. Among five regions of injected NAPL contamination located above the single gas injection port, and during 2 h of ozone sparging, with SDBS applied, more than 50% of fluorescence in the NAPL was removed, whereas under the same conditions with no SDBS applied, less than 30% was removed. Diverted gas flow through the venting ports installed in the aquifer model induced a horizontally expanded oxidative reaction zone during ozone sparging. This study demonstrates enhanced gas sparging performance for the removal of contaminants from the aquifer with limited usage of additives applied specifically to the source zone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2022.104002DOI Listing

Publication Analysis

Top Keywords

gas sparging
28
ozone sparging
16
sparging
13
gas
10
surfactant-enhanced gas
8
sparging process
8
source zone
8
organic contaminant
8
aquifer model
8
venting ports
8

Similar Publications