A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Automated Deep Learning Analysis for Quality Improvement of CT Pulmonary Angiography. | LitMetric

Automated Deep Learning Analysis for Quality Improvement of CT Pulmonary Angiography.

Radiol Artif Intell

Department of Radiology, University of California San Diego School of Medicine, 9300 Campus Point Dr, MC 0841, La Jolla, CA 92037-0841 (L.D.H., T.A., S.J.K., A.H.); and Naval Hospital Camp Pendleton, Oceanside, Calif (K.H.).

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CT pulmonary angiography (CTPA) is the first-line imaging test for evaluation of acute pulmonary emboli. However, diagnostic quality is heterogeneous across institutions and is frequently limited by suboptimal pulmonary artery (PA) contrast enhancement. In this retrospective study, a deep learning algorithm for measuring enhancement of the central PAs was developed and assessed for feasibility of its use in quality improvement of CTPA. In a convenience sample of 450 patients, automated measurement of CTPA enhancement showed high agreement with manual radiologist measurement ( = 0.996). Using a threshold of less than 250 HU for suboptimal enhancement, the sensitivity and specificity of the automated classification were 100% and 99.5%, respectively. The algorithm was further evaluated in a random sampling of 3195 CTPA examinations from January 2019 through May 2021. Beginning in January 2021, the scanning protocol was transitioned from bolus tracking to a timing bolus strategy. Automated analysis of these examinations showed that most suboptimal examinations following the change in protocol were performed using one scanner, highlighting the potential value of deep learning algorithms for quality improvement in the radiology department. CT Angiography, Pulmonary Arteries © RSNA, 2022.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980873PMC
http://dx.doi.org/10.1148/ryai.210162DOI Listing

Publication Analysis

Top Keywords

deep learning
12
quality improvement
12
pulmonary angiography
8
angiography pulmonary
8
pulmonary
5
automated
4
automated deep
4
learning analysis
4
quality
4
analysis quality
4

Similar Publications