Use of a Minimal Microbial Consortium to Determine the Origin of Kombucha Flavor.

Front Microbiol

UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Equipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Université de Bourgogne Franche-Comté, Dijon, France.

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbiological, chemical, and sensory analyses were coupled to understand the origins of kombucha organoleptic compounds and their implication in the flavor of the kombucha beverage. By isolating microorganisms from an original kombucha and comparing it to monocultures and cocultures of two yeasts ( and ) and an acetic acid bacterium (), interaction effects were investigated during the two phases of production. 32 volatile compounds identified and quantified by Headspace-Solid Phase-MicroExtraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS) were classified according to their origin from tea or microorganisms. Many esters were associated to , while alcohols were associated to both yeasts, acetic acid to , and saturated fatty acids to all microorganisms. Concentration of metabolites were dependent on microbial activity, yeast composition, and phase of production. Sensory analysis showed that tea type influenced the olfactive perception, although microbial composition remained the strongest factor. Association of and induced characteristic apple juice aroma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978889PMC
http://dx.doi.org/10.3389/fmicb.2022.836617DOI Listing

Publication Analysis

Top Keywords

yeasts acetic
8
acetic acid
8
minimal microbial
4
microbial consortium
4
consortium determine
4
determine origin
4
kombucha
4
origin kombucha
4
kombucha flavor
4
flavor microbiological
4

Similar Publications

Functional Metabolism of Aromatic Precursors in Hanseniaspora: A Source of Natural Bioactive Compounds.

FEMS Yeast Res

September 2025

Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.

Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) are commonly used as reporters to examine intracellular genetic, molecular, and biochemical status. Flow cytometry is a powerful technique for accurate quantification of single-cell fluorescent levels. Here, we characterize green, red, and blue FPs for use in yeast .

View Article and Find Full Text PDF

This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.

View Article and Find Full Text PDF

Convenient alternative synthesis of the -derived virulence factor malassezione and related compounds.

Beilstein J Org Chem

August 2025

Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.

Lipophilic yeasts of the genus are commensal fungi that constitute the normal skin microbiota but may become pathogenic. These fungi, especially , convert tryptophan into various alkaloid indoles such as malassezione, which may serve as virulence factors. To facilitate testing of malassezione as an aryl hydrocarbon receptor agonist and potential glucokinase activator, we developed a convenient synthetic route from commercially available indole-3-acetic acid.

View Article and Find Full Text PDF

Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.

View Article and Find Full Text PDF