Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer's disease.

Neuron

Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA; Parekh Center for Interdiscipl

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Resolving glial contributions to Alzheimer's disease (AD) is necessary because changes in neuronal function, such as reduced synaptic density, altered electrophysiological properties, and degeneration, are not entirely cell autonomous. To improve understanding of transcriptomic heterogeneity in glia during AD, we used single-nuclei RNA sequencing (snRNA-seq) to characterize astrocytes and oligodendrocytes from apolipoprotein (APOE) Ɛ2/3 human AD and age- and genotype-matched non-symptomatic (NS) brains. We enriched astrocytes before sequencing and characterized pathology from the same location as the sequenced material. We characterized baseline heterogeneity in both astrocytes and oligodendrocytes and identified global and subtype-specific transcriptomic changes between AD and NS astrocytes and oligodendrocytes. We also took advantage of recent human and mouse spatial transcriptomics resources to localize heterogeneous astrocyte subtypes to specific regions in the healthy and inflamed brain. Finally, we integrated our data with published AD snRNA-seq datasets, highlighting the power of combining datasets to resolve previously unidentifiable astrocyte subpopulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167747PMC
http://dx.doi.org/10.1016/j.neuron.2022.03.008DOI Listing

Publication Analysis

Top Keywords

astrocytes oligodendrocytes
16
alzheimer's disease
8
astrocytes
5
oligodendrocytes undergo
4
undergo subtype-specific
4
subtype-specific transcriptional
4
transcriptional changes
4
changes alzheimer's
4
disease resolving
4
resolving glial
4

Similar Publications

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

The Role of Neuroglia in Cognitive Longevity.

Neurochem Res

September 2025

International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.

The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system (CNS) and is most often clinically presented in a relapsing form. Within MS lesions, oligodendrocyte progenitor cells (OPCs) differentiate into mature myelinating oligodendrocytes and mediate repair. A further understanding of the molecular mechanisms responsible for OPC differentiation will undoubtedly influence the direction of future treatments in MS.

View Article and Find Full Text PDF

Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment.

View Article and Find Full Text PDF

This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion.

View Article and Find Full Text PDF