98%
921
2 minutes
20
Background: Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by complex dysregulation of lipids. Increasing evidence suggests that particular lipid species are associated with HCC progression. Here, we aimed to identify lipid biomarkers of HCC associated with the induction of two oncogenes, xmrk, a zebrafish homolog of the human epidermal growth factor receptor (EGFR), and Myc, a regulator of EGFR expression during HCC.
Methods: We induced HCC in transgenic xmrk, Myc, and xmrk/Myc zebrafish models. Liver specimens were histologically analyzed to characterize the HCC stage, Oil-Red-O stained to detect lipids, and liquid chromatography/mass spectrometry analyzed to assign and quantify lipid species. Quantitative real-time polymerase chain reaction was used to measure lipid metabolic gene expression in liver samples. Lipid species data was analyzed using univariate and multivariate logistic modeling to correlate lipid class levels with HCC progression.
Results: We found that induction of xmrk, Myc and xmrk/Myc caused different stages of HCC. Lipid deposition and class levels generally increased during tumor progression, but triglyceride levels decreased. Myc appears to control early HCC stage lipid species levels in double transgenics, whereas xmrk may take over this role in later stages. Lipid metabolic gene expression can be regulated by either xmrk, Myc, or both oncogenes. Our computational models showed that variations in total levels of several lipid classes are associated with HCC progression.
Conclusions: These data indicate that xmrk and Myc can temporally regulate lipid species that may serve as effective biomarkers of HCC progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981695 | PMC |
http://dx.doi.org/10.1186/s40170-022-00283-y | DOI Listing |
Mol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
Polyunsaturated fatty acids (PUFAs), fatty acids with multiple unsaturated carbon-carbon bonds, constitute a crucial class of lipids. While the vast diversity of PUFA species arises from their structural variations, most of them are poorly investigated due to their limited availability. Here, we utilize solid-phase synthesis of PUFAs, which we have recently developed, to construct a PUFA library.
View Article and Find Full Text PDFFront Genet
August 2025
Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States.
Introduction: Aging is accompanied by systemic metabolic changes that contribute to disease susceptibility and functional decline. Sex differences in aging have been reported in humans, yet their mechanistic basis remains poorly understood. Due to their physiological similarity to humans, rhesus macaques are a powerful translational model to investigate sex-specific metabolomic aging under controlled conditions.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States.
Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
Department of Biology, Ghent University, Ghent, Flanders, Belgium.
Iridescent coloration is a vibrant structural colour that is widespread in nature, but in mammals is thought to be limited. Although multiple rodent and Eulipotyphlan species have been anecdotally described as iridescent, empirical evidence outside of the Chrysochloridae (golden mole) family is lacking. As iridescence in golden moles is created through a thin-film mechanism from a compressed cuticle structure, and the structure of hair is highly conserved, we expect iridescence to be present, and produced by the same mechanism, in mammals that share similar hair properties.
View Article and Find Full Text PDF