A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Impact of COVID-19 lockdown on the atmospheric boundary layer and instability process over Indian region. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The abrupt reduction in the human activities during the first lockdown of the COVID-19 pandemic created unprecedented changes in the background atmospheric conditions. Several studies reported the anthropogenic and air quality changes observed during the lockdown. However, no attempts are made to investigate the lockdown effects on the Atmospheric Boundary Layer (ABL) and background instability processes. In this study, we assess the lockdown impacts on the ABL altitude and instability parameters (Convective Available Potential Energy (CAPE) and Convective Inhibition Energy (CINE)) using WRF model simulations. Results showed a unique footprint of COVID-19 lockdown in all these parameters. Increase in the visibility, surface temperature and wind speed and decrease in relative humidity during the lockdown is noticed. However, these responses are not uniform throughout India and are significant in the inland compared to the coastal regions. The spatial variation of temperature (wind speed) and relative humidity shows an increase and decrease over the Indo Gangetic Plain (IGP) and central parts of India by 20% (100%) and 40%, respectively. Increase (80%) in the ABL altitude is larger over the IGP and central parts of India during lockdown of 2020 compared to similar time period in 2015-2019. This increase is attributed to the stronger insolation due to absence of anthropogenic activity and other background conditions. At the same time, CAPE decreased by 98% in the IGP and central parts of India, where it shows an increase in other parts of India. A prominent strengthening of CINE in the IGP and a weakening elsewhere is also noticed. These changes in CAPE and CINE are mainly attributed to the dearth of saturation in lower troposphere levels, which prevented the development of strong adiabatic ascent during the lockdown. These results provide a comprehensive observation and model-based insight for lockdown induced changes in the meteorological and thermo-dynamical parameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975591PMC
http://dx.doi.org/10.1016/j.scitotenv.2022.154995DOI Listing

Publication Analysis

Top Keywords

parts india
16
igp central
12
central parts
12
lockdown
10
covid-19 lockdown
8
atmospheric boundary
8
boundary layer
8
abl altitude
8
temperature wind
8
wind speed
8

Similar Publications