Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Idiopathic pulmonary fibrosis is a progressive lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. We previously identified HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (statins) as YAP inhibitors based on a high-throughput small-molecule screen in primary human lung fibroblasts. Here we report that several Aurora kinase inhibitors were also identified from the top hits of this screen. MK-5108, a highly selective inhibitor for AURKA (Aurora kinase A), induced YAP phosphorylation and cytoplasmic retention and significantly reduced profibrotic gene expression in human lung fibroblasts. The inhibitory effect on YAP nuclear translocation and profibrotic gene expression is specific to inhibition of AURKA, but not Aurora kinase B or C, and is independent of the Hippo pathway kinases LATS1 and LATS2 (Large Tumor Suppressor 1 and 2). Further characterization of the effects of MK-5108 demonstrate that it inhibits YAP nuclear localization indirectly via effects on actin polymerization and TGFβ (Transforming Growth Factor β) signaling. In addition, MK-5108 treatment reduced lung collagen deposition in the bleomycin mouse model of pulmonary fibrosis. Our results reveal a novel role for AURKA in YAP-mediated profibrotic activity in fibroblasts and highlight the potential of small-molecule screens for YAP inhibitors for identification of novel agents with antifibrotic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9798384PMC
http://dx.doi.org/10.1165/rcmb.2021-0428OCDOI Listing

Publication Analysis

Top Keywords

aurora kinase
16
yap nuclear
12
nuclear localization
8
pulmonary fibrosis
8
fibroblast activation
8
yap inhibitors
8
human lung
8
lung fibroblasts
8
aurka aurora
8
profibrotic gene
8

Similar Publications

Design and synthesis of novel indolinone Aurora B kinase inhibitors based on fragment-based drug discovery (FBDD).

Mol Divers

September 2025

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.

Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.

View Article and Find Full Text PDF

Polyploidy, a conserved mechanism involved in normal development and tissue homeostasis, plays a paradoxical role in cancer by facilitating both tumor progression and therapeutic vulnerability. Although polyploidization may confer survival advantages to cancer cells, its controlled induction could represent an effective anticancer strategy. Aurora B kinase, a critical regulator of mitosis, plays a pivotal role in ensuring chromosomal integrity and preventing polyploidy.

View Article and Find Full Text PDF

Aurora kinase A (AURKA) is a serine/threonine kinase that plays a critical role in cell cycle regulation, particularly during mitosis. Recent studies have identified AURKA as an oncogene overexpressed in various cancers, including gastric cancer (GC). This review summarizes the molecular mechanisms by which AURKA contributes to GC pathogenesis, including its roles in cell proliferation, apoptosis inhibition, epithelial-mesenchymal transition (EMT), and cancer stemness.

View Article and Find Full Text PDF

Aurora kinase A promotes trained immunity via regulation of endogenous S-adenosylmethionine metabolism.

Elife

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Innate immune cells can acquire a memory phenotype, termed trained immunity, but the mechanism underlying the regulation of trained immunity remains largely elusive. Here, we demonstrate that inhibition of Aurora kinase A (AurA) dampens trained immunity induced by β-glucan. ATAC-seq and RNA-seq analysis reveal that AurA inhibition restricts chromatin accessibility of genes associated with inflammatory pathways such as JAK-STAT, TNF, and NF-κB pathways.

View Article and Find Full Text PDF

Unopposed platelet activation can be associated with pathologic thrombosis. An intact growth arrest-specific gene 6 (GAS6)/Mer receptor tyrosine kinase (MERTK) signaling pathway contributes importantly to potentiating platelet activation triggered by molecular agonists ex vivo and thrombus stabilization in vivo. We describe, herein, the inhibition of platelet function and stable thrombus formation conferred by iMer, a naturally occurring MERTK splice variant, that acts as a GAS6 decoy receptor and decreases phosphorylation of MERTK.

View Article and Find Full Text PDF